Original Articles |
|
|
|
|
Effect of Silane Flow Rate on Structure and Corrosion Resistance of Ti-Si-N Thin Films Deposited by a Hybrid Cathodic Arc and Chemical Vapour Process |
YIN Long-Cheng1,2, LUAN Sen1,2, LV Guo-Hua2, WANG Xing-Quan1,2, HUANG Jun1,2, JIN Hui1,2, FENG Ke-Cheng1,YANG Si-Ze2 |
1College of Science, Changchun University of Science and Technology, Changchun 1300222Institute of Physic, Chinese Academy of Sciences, Beijing 100080 |
|
Cite this article: |
YIN Long-Cheng, LUAN Sen, LV Guo-Hua et al 2008 Chin. Phys. Lett. 25 4072-4075 |
|
|
Abstract Ti--Si--N thin films with different silicon contents are deposited by a cathodic arc technique in an Ar+N2+SiH4 mixture atmosphere. With the increase of silane flow rate, the content of silicon in the Ti--Si--N films varies from 2.0at.% to 12.2at.%. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti--Si--N film consists of TiN crystallites and SiNx amorphous phase. The corrosion resistance is improved with the increase of silane flow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13% to 0.00032% by introducing silane at the flow rate of 14sccm.
|
Keywords:
52.75.-d
61.82.Rx
68.60.-p
|
|
Received: 18 July 2008
Published: 25 October 2008
|
|
PACS: |
52.75.-d
|
(Plasma devices)
|
|
61.82.Rx
|
(Nanocrystalline materials)
|
|
68.60.-p
|
(Physical properties of thin films, nonelectronic)
|
|
|
|
|
[1] Veprek S and Reiprich S 1995 Thin Soild Films 268 64 [2] Veprek S, Reiprich S and Li S Z 1995 Appl. Phys. Lett. 66 20 [3] Hsieh J H, Tan A L K and Zeng X T 2006 Surf. Coat. Technol. 201 4094 [4] Perez-Mariano J, Lau K H, Sanjurjo A, Caro J, Casellas D and Colominas C 2006 Surf. Coat. Technol. 201 2217 [5] Ye X, Li L H, Cai X and Paul K Chu 2007 Surf. Coat. Technol. 201 6824 [6] Kang M C, Kim J S and Kim K H 2005 Surf. Coat. Technol. 200 1939 [7] P J Martin and A Bendavid 2003 Surf. Coat. Technol. 163--164 245 [8] Niu E W, Fan S H, Li L and Lv G H 2006 Chin. Phys. Lett. 23 1533 [9] Prochazka J, Karvankova P et al 2004 Mat. Sci. Eng. A 384 102 [10] Pilloud D, Pierson J F, Steyer P, Mege A, Stauder B and Jacquot P 2007 Mater. Lett. 61 2506 [11] Li X Z, Zhang X H, He P and Niu E W 2007 Chin. Phys. Lett. 24 1633 [12] Ding X Z, Zeng X T and Liu Y C 2006 J. Vac. Sci. Technol. A 24 4 [13] Bendavid A, Martin P J, Preston E W, Cairney J, Xie Z H and Hoffman M 2006 Surf. Coat. Technol. 201 4139 [14] Pelleg J, Zevin L Z and Lungo S 1991 Thin Solid Films 197 117 [15] Zhang C H, Lu X C, Wang H, Luo J B, Shen Y G and Li K Y 2006 Appl. Surf. Sci. 252 6141 [16] Endle J P, Sun Y M, White J M and Ekerdt J G 1998 J. Vac. Sci. Technol. A 16 1262 [17] Merl D K, Panjan P, Cekada M and Macek M 2004 Electrochim. Acta 49 1527 [18] Creus J, Mazille H and Idrissi H 2000 Surf. Coat. Technol. 130 224 [19] Li L, Niu E W, Lv G H, Feng W R and Yang S Z 2006 Chin. Phys. Lett. 23 3018
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|