Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 4042-4045    DOI:
Original Articles |
Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice
LI Hua-Bing, JIN Li, QIU Bing
Department of Information Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004
Cite this article:   
LI Hua-Bing, JIN Li, QIU Bing 2008 Chin. Phys. Lett. 25 4042-4045
Download: PDF(265KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To study two-dimensional red blood cells deforming in a shear flow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow.
Keywords: 47.11.-j      82.70.-y      47.10.-g     
Received: 23 June 2008      Published: 25 October 2008
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  82.70.-y (Disperse systems; complex fluids)  
  47.10.-g (General theory in fluid dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/04042
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Hua-Bing
JIN Li
QIU Bing
[1] Fung Y C 1997 Biomechanics Circulation (Berlin:
Springer)
[2] Fischer T M, St\"{ohr-Liesen M and Schmid-Sch\"{onbein
H 1978 Science 24 894
[3] Kraus M, Wintz W, Seifert U and Lipowsky R 1996 Phys.
Rev. Lett. 77 3685
[4] Pozrikidis C 2003 Ann. Biomed. Eng. 31 1
[5] Eggleton C D and Popel A S 1998 Phys. Fluids
10 1843
[6] Beaucourt J, Rioual F, S\'{eon T, Biben T and Misbah C
2004 Phys. Rev. E 69 011906
[7] Li J,Lykotrafitis G, Dao M and Suresh S 2007 Proc.
Natl. Acad. Sci. U.S.A. 104 4937
[8]Sui Y, Chew Y T, Roy P, Chen X B and Low H T 2007
Phys. Rev. E 75 066301
[9] Dupin M M, Halliday I, Care C M, Alboul L and Munn L L
2007 Phys. Rev. E 75 066707
[10] Zhang J F, Johnsonb P C and Popel A S 2008 J.
Biomech. 41 47
[11] Pozrikidis C 2003 Modeling and Simulation of
Capsules and Biological Cells (Boca Raton: Chapman \& Hall/CRC)
[12] Chen S Y, Chen H D, Martinez D O and Matthaeus W H 1991
Phys. Rev. Lett. 67 3776
[13] Qian Y H, d'Humi\'{eres D and Lallemand P 1992
Europhys. Lett. 17 479
[14] Yi H H, Xu S X, Qian Y H and Fang H P 2005 Chin.
Phys. Lett. 22 3210
[15] Lu X Y, Yi H H, Chen J Y and Fang H P 2006 Chin.
Phys. Lett. 23 738
[16] Li H B, Yi H H, Shan X W and Fang H P 2008 Europhys.
Lett. 81 54002
[17] Stoltz J F et al 1999 Clin. Hemorheol. Micro.
21 201
[18] Gallucci M T et al. 1999 Clin. Nephrology
52 239
[19] Vincensinia L, Fall G, Berry L, Blisnicka T and Bretona C
B 2008 Mol. Biochem. Parasitol. 160 81
[20] Ou-Yang Z C and Helfrich W 1987 Phys. Rev. Lett.
59 2486
[21] Li H B, Lu X Y, Fang H P and Qian Y H 2004 Phys.
Rev. E 70 026701
[22] Allen M P and Tildesley D J 1987 Computer Simulation
of Liquid (Oxford: Clarendon)
[23] Evans E A and Hochmuth R M 1976 Biophys. J.
16 1
[24] Syoten O 1988 Biorheology translated by Wu Y et al
(Beijing: Science Press) (in Chinese)).
[25] Walter G, Ludwig N and Horst S 1995 Thermodynamics
and Statistical Mechanics (Berlin: Springer)
[26] Fischer T M and Schmid-Sch\"{onbein H 1978 Red Cell
Rheology (Berlin: Springer)
Related articles from Frontiers Journals
[1] WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 4042-4045
[2] Arbab I. Arbab, Hisham. M. Widatallah. On the Generalized Continuity Equation[J]. Chin. Phys. Lett., 2010, 27(8): 4042-4045
[3] S. Nadeem, Noreen Sher Akbar. Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis[J]. Chin. Phys. Lett., 2010, 27(6): 4042-4045
[4] TAN Yun-Liang, TENG Gui-Rong, ZHANG Ze. A Modified LBM Model for Simulating Gas Seepage in Fissured Coal Considering Klinkenberg Effects and Adsorbability-Desorbability[J]. Chin. Phys. Lett., 2010, 27(1): 4042-4045
[5] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 4042-4045
[6] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 4042-4045
[7] LIU Ping, LOU Sen-Yue,. A (2+1)-Dimensional Displacement Shallow Water Wave System[J]. Chin. Phys. Lett., 2008, 25(9): 4042-4045
[8] Rafael Cortell. A Numerical Tackling on Sakiadis Flow with Thermal Radiation[J]. Chin. Phys. Lett., 2008, 25(4): 4042-4045
[9] WEI Jin-Jia, KAWAGUCHI Yasuo, YU Bo, LI Feng-Chen. Brownian Dynamics Simulation of Microstructures and Elongational Viscosities of Micellar Surfactant Solution[J]. Chin. Phys. Lett., 2008, 25(12): 4042-4045
[10] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 4042-4045
[11] TAN Xin-Yu, ZHANG Duan-Ming, FENG Sheng-Qin, LI Zhi-Hua, LIU Gao-Bin, FANG Ran-Ran, SUN Min. A New Dynamics Expansion Mechanism for Plasma during Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2008, 25(1): 4042-4045
[12] CHEN Yan-Yan, , YI Hou-Hui, LI Hua-Bing,. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation[J]. Chin. Phys. Lett., 2008, 25(1): 4042-4045
[13] XU Sheng-Hua, SUN Zhi-Wei. Evaluation of Influence of Multiple Scattering Effect in Light-Scattering-Based Applications[J]. Chin. Phys. Lett., 2007, 24(6): 4042-4045
[14] CHEN Yong. Effect of Size Polydispersity on Melting of Charged Colloidal Systems[J]. Chin. Phys. Lett., 2003, 20(9): 4042-4045
[15] NI Fu-Sheng, GU Guo-Qing, CHEN Kang-Min. Low-Frequency Dielectric Dispersion of Highly Concentrated Spherical Particles in an Electrolyte Solution[J]. Chin. Phys. Lett., 2002, 19(10): 4042-4045
Viewed
Full text


Abstract