Original Articles |
|
|
|
|
Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice |
LI Hua-Bing, JIN Li, QIU Bing |
Department of Information Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 |
|
Cite this article: |
LI Hua-Bing, JIN Li, QIU Bing 2008 Chin. Phys. Lett. 25 4042-4045 |
|
|
Abstract To study two-dimensional red blood cells deforming in a shear flow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow.
|
Keywords:
47.11.-j
82.70.-y
47.10.-g
|
|
Received: 23 June 2008
Published: 25 October 2008
|
|
PACS: |
47.11.-j
|
(Computational methods in fluid dynamics)
|
|
82.70.-y
|
(Disperse systems; complex fluids)
|
|
47.10.-g
|
(General theory in fluid dynamics)
|
|
|
|
|
[1] Fung Y C 1997 Biomechanics Circulation (Berlin: Springer) [2] Fischer T M, St\"{ohr-Liesen M and Schmid-Sch\"{onbein H 1978 Science 24 894 [3] Kraus M, Wintz W, Seifert U and Lipowsky R 1996 Phys. Rev. Lett. 77 3685 [4] Pozrikidis C 2003 Ann. Biomed. Eng. 31 1 [5] Eggleton C D and Popel A S 1998 Phys. Fluids 10 1843 [6] Beaucourt J, Rioual F, S\'{eon T, Biben T and Misbah C 2004 Phys. Rev. E 69 011906 [7] Li J,Lykotrafitis G, Dao M and Suresh S 2007 Proc. Natl. Acad. Sci. U.S.A. 104 4937 [8]Sui Y, Chew Y T, Roy P, Chen X B and Low H T 2007 Phys. Rev. E 75 066301 [9] Dupin M M, Halliday I, Care C M, Alboul L and Munn L L 2007 Phys. Rev. E 75 066707 [10] Zhang J F, Johnsonb P C and Popel A S 2008 J. Biomech. 41 47 [11] Pozrikidis C 2003 Modeling and Simulation of Capsules and Biological Cells (Boca Raton: Chapman \& Hall/CRC) [12] Chen S Y, Chen H D, Martinez D O and Matthaeus W H 1991 Phys. Rev. Lett. 67 3776 [13] Qian Y H, d'Humi\'{eres D and Lallemand P 1992 Europhys. Lett. 17 479 [14] Yi H H, Xu S X, Qian Y H and Fang H P 2005 Chin. Phys. Lett. 22 3210 [15] Lu X Y, Yi H H, Chen J Y and Fang H P 2006 Chin. Phys. Lett. 23 738 [16] Li H B, Yi H H, Shan X W and Fang H P 2008 Europhys. Lett. 81 54002 [17] Stoltz J F et al 1999 Clin. Hemorheol. Micro. 21 201 [18] Gallucci M T et al. 1999 Clin. Nephrology 52 239 [19] Vincensinia L, Fall G, Berry L, Blisnicka T and Bretona C B 2008 Mol. Biochem. Parasitol. 160 81 [20] Ou-Yang Z C and Helfrich W 1987 Phys. Rev. Lett. 59 2486 [21] Li H B, Lu X Y, Fang H P and Qian Y H 2004 Phys. Rev. E 70 026701 [22] Allen M P and Tildesley D J 1987 Computer Simulation of Liquid (Oxford: Clarendon) [23] Evans E A and Hochmuth R M 1976 Biophys. J. 16 1 [24] Syoten O 1988 Biorheology translated by Wu Y et al (Beijing: Science Press) (in Chinese)). [25] Walter G, Ludwig N and Horst S 1995 Thermodynamics and Statistical Mechanics (Berlin: Springer) [26] Fischer T M and Schmid-Sch\"{onbein H 1978 Red Cell Rheology (Berlin: Springer)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|