Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 4038-4041    DOI:
Original Articles |
Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method
RAO Yong, NI Yu-Shan, LIU Chao-Feng
Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433
Cite this article:   
RAO Yong, NI Yu-Shan, LIU Chao-Feng 2008 Chin. Phys. Lett. 25 4038-4041
Download: PDF(314KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The multi-bifurcation effect of blood flow is investigated by lattice Boltzmann method at Re=200 with six different bifurcation angles α, which are 22.5°, 25°, 28°, 30°, 33°, 35°, respectively. The velocities and ratios of average velocity at various bifurcations are discussed. It is indicated that the maximum velocity at the section near the first divider increases and shifts towards the walls of branch with the increase of α. At the first bifurcation, the average horizontal velocities increase with the increase of α. The average horizontal velocities of outer branches at the secondary bifurcation decrease at 22.5°≤ α≤30° and increase at 30°≤α≤ 35°, whereas those of inner branches at the secondary bifurcation have the opposite variation, as the same as the above variations of the ratios of average horizontal velocities at various bifurcations. The ratios of average vertical velocities of branch at first bifurcation to that of outer branches at the secondary bifurcation increase at 22.5°≤α≤30° and decrease at 30°≤ α ≤ 35°, whereas the ratios of average vertical velocities of branch at first bifurcation to that of inner branches at the secondary bifurcation always decrease.

Keywords: 47.11.-j      47.11.Qr      47.27.Nd     
Received: 06 March 2008      Published: 25 October 2008
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  47.11.Qr (Lattice gas)  
  47.27.nd (Channel flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/04038
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RAO Yong
NI Yu-Shan
LIU Chao-Feng
[1] WHO 2002 The World Health Report (Geneva: World
Health Organization)
[2] Artoti A M, Kandhai D, Hoefsloot H C J, Hoekstra A G and
Sloot P M A 2004 Future Generation Computer Systems 20
909
[3] Berger S A and Jou L D 2000 Ann. Rev. Fluid Mech.
32 347
[4] Taylor C A, Hughes T J R and Zarins C K 1998 Comput.
Meth. Appl. Mech. Eng. 158 155
[5] Maier S E, Meier D, Boesiger P, Moser U and Viele A 1989
Radiology 171 487
[6] McDonald D A 1974 Blood Flow in Arteries (London:
Arnold) vol 2 p 432
[7] Reneman R S, Hoeks A P G, Vosse F N van de and Ku D N 1993
Cerebrovasc. Dis. 10 185
[8] Qian Y H, d'Humi\'eres D and Lallemand P 1992
Europhys. Lett. 17 479
[9] Fang H P, Wang Z W and Lin Z F 2002 Phys. Rev. E
65 051925
[10] Chen S Y, Chen H and Matinez D 1991 Phys. Rev.
Lett. 67 3776
[11] Zou Q, Hou S, Chen S and Doolen G D 1995 J. Stat.
Phys. 81 35
[12] Krafczyk M, Cerrolaza M, Schulz M and Rank E 1998 J.
Biomech. 31 453
[13] Kang X Y, Liu D H, Zhou J and Jin Y J 2005 Chin.
Phys. Lett. 22 2873
[14] Li H B, Fang H P and Lin Z F 2004 Phys. Rev. E.
69 031919
[15] Ladd A J C 1994 J. Fluid Mech. 271 285
[16] Bhatnagar P L, Gross E P and Krook M 1954 Phys.
Rev. A 94 511
[17] Mei R, Luo L S and Shyy W 1999 J. Computat. Phys.
155 307
[18] Ding X H, Li G J and Zhong Z H 2006 Adv. Mech.
36 103 (in Chinese)
[19] Caro C G, Pedley T J, Schroter R C and Seed W A 1978
The Mechanics of the Circulation (Oxford: Oxford University Press)
[20] Li C H and Li C X 2005 J. Shandong University
(Health Sciences) 43 818 (in Chinese)
Related articles from Frontiers Journals
[1] YANG Wei, ZHOU Kun. A New Method of Simulating Fiber Suspensions and Applications to Channel Flows[J]. Chin. Phys. Lett., 2012, 29(6): 4038-4041
[2] WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 4038-4041
[3] YANG Zi-Xuan,CUI Gui-Xiang**,XU Chun-Xiao,ZHANG Zhao-Shun,SHAO Liang. Correlation between Temperature and Velocity Fluctuations in the Near-Wall Region of Rotating Turbulent Channel Flow[J]. Chin. Phys. Lett., 2012, 29(5): 4038-4041
[4] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 4038-4041
[5] T. Hayat, **, S. Hina, Awatif A. Hendi . Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(8): 4038-4041
[6] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 4038-4041
[7] NIE De-Ming, LIN Jian-Zhong, . Characteristics of Flow around an Impulsively Rotating Square Cylinder via LB-DF/FD Method[J]. Chin. Phys. Lett., 2010, 27(10): 4038-4041
[8] GUO Xiao-Hui, LIN Jian-Zhong, NIE De-Ming. Vortex Structures and Behavior of a Flow Past Two Rotating Circular Cylinders Arranged Side-by-Side[J]. Chin. Phys. Lett., 2009, 26(8): 4038-4041
[9] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 4038-4041
[10] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 4038-4041
[11] KIM Dehee, KIM Hyung Min, JHON Myung S., VINAY III Stephen J., BUCHANAN John. A Characteristic Non-Reflecting Boundary Treatment in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(6): 4038-4041
[12] Rafael Cortell. A Numerical Tackling on Sakiadis Flow with Thermal Radiation[J]. Chin. Phys. Lett., 2008, 25(4): 4038-4041
[13] DUAN Li, KANG Qi, HU Wen-Rui. Experimental Study on Liquid Free Surface in Buoyant-Thermocapillary Convection[J]. Chin. Phys. Lett., 2008, 25(4): 4038-4041
[14] RAN Zheng. Thermo-Hydrodynamic Lattice BGK Schemes with Lie Symmetry Preservation[J]. Chin. Phys. Lett., 2008, 25(11): 4038-4041
[15] LI Hua-Bing, JIN Li, QIU Bing. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice[J]. Chin. Phys. Lett., 2008, 25(11): 4038-4041
Viewed
Full text


Abstract