Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 4030-4033    DOI:
Original Articles |
Thermal Diffusion Process Estimation for Fabrication of Graded Plastic Optical Fibre
M. S. Kovacevic1,2, A. Djordjevich2
1Faculty of Science, Department of Physics, University of Kragujevac, Serbia2City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
Cite this article:   
M. S. Kovacevic, A. Djordjevich 2008 Chin. Phys. Lett. 25 4030-4033
Download: PDF(458KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Thermal diffusion of dopants is investigated in the process of generating the graded-index profile of plastic optical fibres. Because the diffusion coefficient in high polymers has been shown to depend strongly on dopant concentration, it is allowed in this work to vary with the radial coordinate of the multistep-core fibre. A novel multi-layer model is presented for solving the diffusion equation with the variable diffusion coefficient. It is solved by the finite difference method. The solution determines the dopant diffusion profile in the fibre. It is verified against a solution from the literature and two cases of fibres with diffused profiles. The application is demonstrated on two examples of graded-index plastic optical fibres, one originally with a two-step and the other with four-step core. The results indicate that closer to the core-cladding interface, the computed diffused profile with variable diffusion coefficient D is closer to target profile than the profile obtained with constant D for the same time of thermal process.

Keywords: 42.81.-i      42.81.Ht      02.30.Jr      02.70.Bf     
Received: 17 June 2008      Published: 25 October 2008
PACS:  42.81.-i (Fiber optics)  
  42.81.Ht (Gradient-index (GRIN) fiber devices)  
  02.30.Jr (Partial differential equations)  
  02.70.Bf (Finite-difference methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/04030
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. S. Kovacevic
A. Djordjevich
[1] Zubia J and Arrue J 2001 Opt. Fiber Technol. 7
101
[2] Koeppen C et al 1998 J. Opt. Soc. Am. B 15 717
[3] Bunge C A and Poisel H 2007 POF Modeling: Theory,
Measurement and Application (Herstellung und Verlag: Books on
Demand GmbH, Norderstedt)
[4] Ghatak A and Thyagarajan K 1998 Introduction to Fiber
Optics (Cambridge: Cambridge University Press) p 65
[5] Levfin V et al 1999 Proc. ICPOF p98
[6] Irie K, Uozu Y and Yoshimura T 2001 Proc. ICPOF p73
[7] Lee S et al 2003 Microwave Opt. Technol. Lett.
39 129
[8] Crank J 1975 The Mathematics of Diffusion (Oxford:
Clarendon)
[9] Djordjevich A and Savovic S 2005 Opt. Eng. 44
095003-1
[10] Sadiku M 1992 The Numerical Techniques in
Electromagnetic (Boca Raton, FL: CRC Press) p 141
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 4030-4033
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 4030-4033
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 4030-4033
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 4030-4033
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 4030-4033
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 4030-4033
[7] CHEN Wei,MENG Zhou**,ZHOU Hui-Juan,LUO Hong. Effects of Input Spectra on the Threshold of Modulation Instability in a Single-Mode Fiber[J]. Chin. Phys. Lett., 2012, 29(4): 4030-4033
[8] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 4030-4033
[9] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 4030-4033
[10] JIANG Ming, TANG Min-Jin, WU Hao, LI Yan-Jie, XIE Hui-Min. FIB Moiré Gratings and Their Application in the Measurement of Optical Fibers' Mechanical Properties[J]. Chin. Phys. Lett., 2012, 29(3): 4030-4033
[11] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 4030-4033
[12] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 4030-4033
[13] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 4030-4033
[14] JING Lei, **, YAO Jian-Quan, . Single Mode Condition and Power Fraction of Air-Cladding Total Refractive Guided Porous Polymer Terahertz Fibers[J]. Chin. Phys. Lett., 2011, 28(8): 4030-4033
[15] YU Huai-Yong, **, ZHANG Chun-Xi, FENG Li-Shuang, HONG Ling-Fei, WANG Jun-Jie, . Optical Noise Analysis in Dual-Resonator Structural Micro-Optic Gyro[J]. Chin. Phys. Lett., 2011, 28(8): 4030-4033
Viewed
Full text


Abstract