Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 3999-4002    DOI:
Original Articles |
Influence of Temperature on Stimulated Raman Scattering in Single-Mode Silica Fibre
MEN Zhi-Wei1, FANG Wen-Hui12, SUN Xiu-Ping3, LI Zuo-Wei1, YI Han-Wei3, WANG Zhao-Min2,3, GAO Shu-Qin1, LU Guo-Hui1
1Key Laboratory of Coherent Light, Atomic and Molecular Spectroscopy (Ministry of Education), College of Physics, Jilin University, Changchun 1300232College of Optical-Electrical Information, Changchun University of Science and Technology, Changchun 1300123Department of Physics, Changchun University of Science and Technology, Changchun 130022
Cite this article:   
MEN Zhi-Wei, FANG Wen-Hui, SUN Xiu-Ping et al  2008 Chin. Phys. Lett. 25 3999-4002
Download: PDF(392KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract One piece of single-mode silica fibre is used to study of temperature characteristics of stimulated Raman scattering (SRS), additional peaks (double-humped) are observed at both sides of pump light and 1st-order Stokes light in the experiment. The frequency shift of the double-humped is calculated by stimulated Four--Photon mixing (SFPM) phase matching theory, the result is consistent with the frequency shift of this experiment. Simultaneously, the experimental conditions accord with the theoretical calculation of effective coherence length. We indicate that the double-humped phenomenon is caused by SFPM. The intensity of double-humped is first increased, then decreased and finally disappeared as the temperature increases. This phenomenon has been explained theoretically.
Keywords: 42.65.Dr      42.65.Hw     
Received: 25 June 2008      Published: 25 October 2008
PACS:  42.65.Dr (Stimulated Raman scattering; CARS)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/03999
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MEN Zhi-Wei
FANG Wen-Hui
SUN Xiu-Ping
LI Zuo-Wei
YI Han-Wei
WANG Zhao-Min
GAO Shu-Qin
LU Guo-Hui
[1] Hart T R, Aggarwal R and Benjamin L L 1970 Phys.
Rev. B 2 638
[2] Stolen R H, Ippen E P and Tynes A R 1972 Appl. Phys.
Lett. 20 62
[3] Stolen R H and Ippen E P 1973 Appl. Phys. Lett.
22 276
[4] Feng M, Li YG, Li J F, Li J, Zhang X G, Lu K C and Wang H
J 2005 Chin. Phys. Lett. 22 1137
[5] Picozzi A, Montes C, Botineau J and Picholle E 1998
J. Opt. Soc. Am. B 15 1309
[6] Hollenbeck D and Cantrell C D 2002 J. Opt. Soc. Am.
B 19 2886
[7] Zabolotskii A A and Exper J 1999 Theor. Phys.
88 642
[8]Chen Y Z, Li Y Z, Qu G and Xu W C 2006 Chin. Phys.
Lett. 23 2993
[9] Xu YE and Yu Z Q 1996 J. Zhengzhou University
28 40 (in Chinese)
[10]Wardle D A 1999 Raman Scattering in Optical Fibres
(Auckland: The University of Auckland Press) p 17
[11] Garth S J, Pask C and Rosman G E 1998 Opt. Quantum.
Electron. 20 79
[12] Hill KO, Johnson D C and Kawasaki BS 1981 Appl. Opt.
20 1075
[13] Frankreich 2005 Ultrafast Phenomena X$\!$I$\!$V
(Berlin: Springer) 79 569
[14] Golovan L A, Petrov G I and Fang G Y 2006 Appl.
Phys. B 84 303
[15] Long D A 2002 The Raman Effect (New York:
Wiley) p 85
[16] Stolen R Lee H C and Jain R K 1984 J. Opt. Soc. Am.
B 1 652
[17] Shen Y R and Bloembergen N 1965 Phys. Rev. A
137 1787
[18] Rothschild M and Abad H 1983 Opt. Lett. 8 653
[19] Lin C 1983 J. Opt. Commun. 4 2
[20] Billings B H 1963 American Institute of Physics
Handbook (New York: McGraw-Hill) p 25
[21] Lin C Bosch M A 1981 Appl. Phys. Lett. 38 479
[22] Gloge D 1971 Appl. Opt. 10 2252
[23] Stolen R H 1975 IEEE Quantum Electron 11 100
[24] Stolen R H 1975 Appl. Opt. 14 1533
[25] Shibatan S, Edahiro T 1981 Electron. Lett. 17
310
[26]Djafar K, Mynbaev, Lowell L and Scheiner 2002
Fibre-optic Communications Technology (New York: Prentice-Hall)
p 232
[27] Zhao S and Wu F Q 2006 Acta Photon. Sin. 35
1183
Related articles from Frontiers Journals
[1] DING Dong-Sheng, ZHOU Zhi-Yuan, SHI Bao-Sen, ZOU Xu-Bo, GUO Guang-Can. Two-Photon Atomic Coherence Effect of Transition 5S1/2–5P3/2–4D5/2(4D3/2) of 85Rb atoms[J]. Chin. Phys. Lett., 2012, 29(2): 3999-4002
[2] WANG Yan-Bin**, HOU Jing**, CHEN Zi-Lun, CHEN Sheng-Ping, SONG Rui, LI Ying, YANG Wei-Qiang, LU Qi-Sheng . High-Efficiency Supercontinuum Generation at 12.8W in an All-Fiber Device[J]. Chin. Phys. Lett., 2011, 28(7): 3999-4002
[3] CHEN Xiao-Dong, , MAO Qing-He**, SUN Qing, ZHAO Jia-Sheng, LI Pan, FENG Su-Juan. An All-Fiber Gas Raman Light Source Based on a Hydrogen-Filled Hollow-Core Photonic Crystal Fiber Pumped with a Q-Switched Fiber Laser[J]. Chin. Phys. Lett., 2011, 28(7): 3999-4002
[4] QIAO Yao-Jun**, LIU Xue-Jun, JI Yue-Feng . Fiber Nonlinearity Post-Compensation by Optical Phase Conjugation for 40Gb/s CO-OFDM Systems[J]. Chin. Phys. Lett., 2011, 28(6): 3999-4002
[5] LI Jing, DENG Ying, WANG Jian-Jun, LI Ming-Zhong, XU Dang-Peng, LIN Hong-Huan, ZHU Na, ZHANG Rui, JING Feng** . Suppression Impact of Group-Velocity Dispersion on the Cell of Pulse Cleaning[J]. Chin. Phys. Lett., 2011, 28(4): 3999-4002
[6] HE Ping, FAN Rong-Wei, XIA Yuan-Qin, YU Xin, YAO Yong, CHEN De-Ying, ** . Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(4): 3999-4002
[7] LIU Xing, LIU Wei, YIN Jun, QU Jun-Le, LIN Zi-Yang, NIU Han-Ben** . Optimization of Supercontinuum Sources for Ultra-Broadband T-CARS Spectroscopy[J]. Chin. Phys. Lett., 2011, 28(3): 3999-4002
[8] GUO Qing-Lin, DENG Gui-Ying, LIANG Bao-Lai, LI Pan-Lai, LI Yan, LI Xu. Solitons with Periodic Behavior in an SBN:75 Photorefractive Crystal[J]. Chin. Phys. Lett., 2010, 27(8): 3999-4002
[9] GUO Yuan, RUAN Shuang-Chen, YAN Pei-Guang, LI Irene-Ling, YU Yong-Qin. Supercontinuum Gneneration and Modes Analysis in Secondary Cores of a Hollow-Core Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2010, 27(4): 3999-4002
[10] ZHOU Zi-Chao, WEI Rong**, SHI Chun-Yan, WANG Yu-Zhu**. Observation of Modulation Transfer Spectroscopy in the Deep Modulation Regime[J]. Chin. Phys. Lett., 2010, 27(12): 3999-4002
[11] ZHOU Shu-Yu, XIA Tian, XU Zhen, WANG Yu-Zhu. Experimental Properties of Optical Phase Conjugation in Cold Atoms in a Magneto-Optical Trap[J]. Chin. Phys. Lett., 2010, 27(1): 3999-4002
[12] NIE Zhi-Qiang, ZHAO Yan, ZHANG Yan-Peng, GAN Chen-Li, ZHENG Huai-Bin, LI Chang-Biao, LU Ke-Qing. Coexisting Raman- and Rayleigh-Enhanced Four-Wave Mixing in Femtosecond Polarization Beats[J]. Chin. Phys. Lett., 2009, 26(6): 3999-4002
[13] LI Chun-Fei, DOU Na. Optical Switching in Silicon Nanowaveguide Ring Resonators Based on Kerr Effect and TPA Effect[J]. Chin. Phys. Lett., 2009, 26(5): 3999-4002
[14] XU Shi-Xiang, GAO Yan-Xia, CAI Hua, LI Jing-Zhen. A Sensitive Scheme to Observe Weak Photo-Refraction Effects in Some Nonlinear Optical Crystals Pumped by Ultrashort Optical Pulses[J]. Chin. Phys. Lett., 2009, 26(11): 3999-4002
[15] ZHANG Shi-An, WANG Zu-Geng, SUN Zhen-Rong. Achievement of Narrow-Band CARS Signal by Manipulating Broad-band Laser Spectrum[J]. Chin. Phys. Lett., 2008, 25(9): 3999-4002
Viewed
Full text


Abstract