Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 3980-3983    DOI:
Original Articles |
Phase Noise of Optically Generated Microwave Using Sideband Injection Locking
HUANG Jin, SUN Chang-Zheng, SONG Yu, XIONG Bing, LUO Yi
State Key Lab on Integrated Optoelectronics, Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084
Cite this article:   
HUANG Jin, SUN Chang-Zheng, SONG Yu et al  2008 Chin. Phys. Lett. 25 3980-3983
Download: PDF(548KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optically generated 20-GHz microwave carriers with phase noise lower than -75dBc/Hz at 10kHz offset and lower than -90dBc/Hz at 100kHz offset are
obtained using single- and double-sideband injection locking. Within the locking range, the effect of sideband injection locking can be regarded as narrow-band amplification of the modulation sidebands. Increasing the current of slave laser will increase the power of beat signal and reduce the phase noise to a certain extent. Double-sideband injection locking can increase the power of the generated microwave carrier while keeping the phase noise at a low level. It is also revealed that partially destruction of coherence between the two beating lights in the course of sideband injection locking would impair the phase noise performance.

Keywords: 42.55.-f      42.55.Px     
Received: 17 June 2008      Published: 25 October 2008
PACS:  42.55.-f (Lasers)  
  42.55.Px (Semiconductor lasers; laser diodes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/03980
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Jin
SUN Chang-Zheng
SONG Yu
XIONG Bing
LUO Yi
[1] Kitayama K 2000 Fiber Integrat. Opt. 19 167
[2] Seeds A J and Williams K J 2006 J. Lightwave
Technol. 24 4628
[3] Ogusu M, Inagaki K and Ohira T 2000 Electron. Lett.
36 2102
[4] Bauer S, Brox O, Kreissl J, Sahin G and Sartorious B 2002
Electron. Lett. 38 334
[5] Braun R P, Grosskopf G, Rohde D and Schmidt F 1998
IEEE Photon. Technol. Lett. 10 728
[6] Ogusu M, Inagaki K and Mizuguchi Y 2001 IEEE
Microwave Wireless Components Lett. 11 101
[7] Kim D Y, Pelusi M, Ahmed Z, Novak D, Liu H F and Ogawa Y
1995 Electron. Lett. 31 733
[8] Johansson L A and Seeds A J 2000 IEEE Photon.
Technol. Lett. 12 690
[9] Chen L, Pi Y, Wen H and Wen S 2006 Microwave Opt.
Technol. Lett. 49 1265
[10] Wang T, Chen M, Chen H, Zhang J and Xie S 2007 IEEE
Photon. Technol. Lett. 19 1191
[11] Braun R P, Grosskopf G, Meschenmoser R, Rohde D and
Schmidt F 1997 Electron. Lett. 33 1395
[12] Laperle C, Svilans M, Poirier M and T\^{etu M 1999
IEEE Trans. Microwave Theor. Tech. 47 1219
[13] Richter L E, Mandelberg H I, Kruger M S and McGrath P A
1986 IEEE J. Quantum Electron. 22 2070
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 3980-3983
[2] MAO Yi-Wei, WANG Yao, CHEN Yang-Hua, XUE Zheng-Qun, LIN Qi, DUAN Yan-Min, SU Hui. Characteristic Optimization of 1.3 μm High-Speed MQW InGaAsP-AlGaInAs Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 3980-3983
[3] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 3980-3983
[4] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 3980-3983
[5] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 3980-3983
[6] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 3980-3983
[7] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 3980-3983
[8] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 3980-3983
[9] ZHOU Kang**, XU Chen, XIE Yi-Yang, ZHAO Zhen-Bo, LIU Fa, SHEN Guang-Di . Reduction of the Far-Field Divergence Angle of an 850nm Multi-Leaf Holey Vertical Cavity Surface Emitting Laser[J]. Chin. Phys. Lett., 2011, 28(8): 3980-3983
[10] WANG Xiao-Long, TAO Tian-Jiong, CHENG Bing, WU Bin, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang** . A Digital Phase Lock Loop for an External Cavity Diode Laser[J]. Chin. Phys. Lett., 2011, 28(8): 3980-3983
[11] LIU Jie**, YANG Ji-Min, WANG Wei-Wei, ZHENG Li-He, SU Liang-Bi, XU Jun . Kerr-Lens Self-Mode-Locked Laser Characteristics of Yb:Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2011, 28(7): 3980-3983
[12] ZHANG Jin-Chuan, , WANG Li-Jun**, LIU Wan-Feng, LIU Feng-Qi, YIN Wen, LIU Jun-Qi, LI Lu, WANG Zhan-Guo . Room-Temperature Continuous-Wave Operation of a Tunable External Cavity Quantum Cascade Laser[J]. Chin. Phys. Lett., 2011, 28(7): 3980-3983
[13] ZHOU Ya-Ting, **, SHI Yue-Chun, LI Si-Min, LIU Sheng-Chun, CHEN Xiang-Fei** . A Special Sampling Structure with an Arbitrary Equivalent-Phase-Shift for Semiconductor Lasers and Multiwavelength Laser Arrays[J]. Chin. Phys. Lett., 2011, 28(7): 3980-3983
[14] MENG Pei-Bei, YAO Bao-Quan**, LI Gang, JU You-Lun, WANG Yue-Zhu . Efficient Tunable Mid-Wave Infrared Laser from 2µm Tm,Ho:YVO4 Pumped Gain−Switched Cr2+:ZnSe Laser[J]. Chin. Phys. Lett., 2011, 28(5): 3980-3983
[15] REN Zhi-Jun, LIANG Xiao-Yan**, YU Liang-Hong, LU Xiao-Ming, LENG Yu-Xin, LI Ru-Xin**, XU Zhi-Zhan** . Efficient Spherical Wavefront Correction near the Focus for the 0.89PW/29.0fs Ti:Sapphire Laser Beam[J]. Chin. Phys. Lett., 2011, 28(2): 3980-3983
Viewed
Full text


Abstract