Original Articles |
|
|
|
|
Improvement of Atomic-Layer-Deposited Al2O3/GaAs Interface Property by Sulfuration and NH3 Thermal Nitridation |
SHI Yu, SUN Qing-Qing, DONG Lin, LIU Han, DING Shi-Jin, ZHANG Wei |
State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433 |
|
Cite this article: |
SHI Yu, SUN Qing-Qing, DONG Lin et al 2008 Chin. Phys. Lett. 25 3954-3956 |
|
|
Abstract Fermi level pinning at the interface between high-k gate dielectric and GaAs induced by unstable native oxides is a major obstacle for high performance GaAs-based metal-oxide-semiconductor (MOS) devices. We demonstrate the improved Al2O3/GaAs interfacial characteristics by (NH4)2S immersion and NH3 thermal pretreatment prior to Al2O3 deposition. X-ray photoelectron spectroscopy (XPS) analysis confirms that sulfuration of GaAs surface by (NH4)2S solution can effectively reduce As-O bonds while Ga-O bonds and elemental As still exist at Al2O3/GaAs interface. However, it is found that N incorporation during the further thermal nitridation on sulfurated GaAs can effectively suppress the native oxides and elemental As in the sequent deposition of Al2O3. Atomic force microscopy (AFM) shows that the further thermal nitridation on sulfurated GaAs surface can also improve the surface roughness.
|
Keywords:
33.60.Fy
79.60.-i
77.55.+f
|
|
Received: 04 July 2008
Published: 25 October 2008
|
|
|
|
|
|
[1] Hasegawa H, Forward K E and Hartnagel H L 1975 Appl. Phys. Lett. 26 567 [2] Passlack M et al 1995 Tech. Dig. Int. Electron Devices Meet. 383 [3] Hong M et al 1996 J. Vac. Sci. Technol. B 14 2297 [4] Kwo J et al 1999 Appl. Phys. Lett. 75 1116 [5] Hong M et al 1999 Science 283 1897 [6] Koveshnikov S et al 2006 Appl. Phys. Lett. 88 022106 [7] Shahrjerdi D, Oye M M, Holmes A L and Banerjee S K 2006 Appl. Phys. Lett. 89 043501 [8] Frank M M et al 2005 Appl. Phys. Lett. 86 152904 [9] Yang J K, Kang M G and Park H H 2004 J. Appl. Phys. 96 4811 [10] Bessolov V N, Konenkova E V, and Lebedev M V 1996 J. Vac. Sci. Technol. B 14 2761 [11] Wang Z et al 1992 Appl. Phys. Lett. 61 1826 [12] Kim H S et al 2006 Appl. Phys. Lett. 89 222903 [13] Lu H-L et al 2006 Appl. Phys. Lett. 89 162905 [14] Lu H-L et al 2006 Chin. Phys. Lett. 23 1929 [15] Kang J K, Kang M G, and Park H H 2002 Vacuum 67 161 [16] Ha J S, Park S J, Kim S B, and Lee E H 1995 J. Vac. Sci. Technol. A 13 646 [17] Hackley J C, Demaree J D and Gougousl T 2008 Appl. Phys. Lett. 92 162902 [18] Medvedev Y V 1994 Appl. Phys. Lett. 64 3458 [19] Spindt J and Spicer W E 1989 Appl. Phys. Lett. 55 1653 [20] Losurdo M et al 1999 J. Vac. Sci. Technol. A 17 2194 [21] Xue C S et al 2003 Appl. Surf. Sci. 210 153 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|