Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 3890-3893    DOI:
Original Articles |
N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation
XU Xiao-Ge1,2,4, MENG Xiang-Hua3, GAO Yi-Tian2
1School of Science, Beijing University of Aeronautics and Astronautics, Beijing 1000832Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 1000833School of Science, Beijing University of Posts and Telecommunications, Beijing 1008764Beijing Information Technology Institute, Beijing 100101
Cite this article:   
XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian 2008 Chin. Phys. Lett. 25 3890-3893
Download: PDF(235KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We concentrate on finding exact solutions for a generalized variable-coefficient Korteweg--de Vries equation of physically significance. The analytic N-soliton solution in Wronskian form for such a model is postulated and verified by direct substituting the solution into the bilinear form by virtue of the Wronskian technique. Additionally, the bilinear auto-Bäcklund transformation between the (N-1)- and N-soliton solutions is verified.

Keywords: 05.45.Yv      02.30.Jr      02.30.Ik     
Received: 18 April 2008      Published: 25 October 2008
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/03890
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Xiao-Ge
MENG Xiang-Hua
GAO Yi-Tian
[1] Lamb G L Jr 1980 Elements of Soliton Theory (New
York: Wiley)
[2] Ablowitz M J and Clarkson P A 1991 Solitons,
Nonlinear Evolution Equations and Inverse Scattering (Cambridge:
Cambridge University Press) Bullough R K and Caudrey P J 1980 Solitons
(Berlin: Springer)
[3] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967
Phys. Rev. Lett. 19 1095 Gardner C S, Greene J M, Kruskal M D and Miura R M 1974
Commun. Pure Appl. Math. 27 97
[4] Ablowitz M J, Kaup D J, Newell A C and Segur H 1973
Phys. Rev. Lett. 30 1262 Ablowitz M J, Kaup D J, Newell A C and Segur H 1973
Phys. Rev. Lett. 31 125
[5] Hirota R 1971 Phys. Rev. Lett. 27 1192 Hirota R 1974 Prog. Theor. Phys. Suppl. 52
1498 Hirota R, Hu X and Tang X 2003 J. Math. Anal. Appl.
288 326 Hu X B 1994 J. Phys. A: Math. Gen. 27 1331
[6] Satsuma J 1979 J. Phys. Soc. Jpn. 46 395
[7] Freeman N C and Nimmo J J C 1983 Phys. Lett. A
95 1 Nimmo J J C and Freeman N C 1983 Phys. Lett. A
95 4
[8] Chan W L and Zhang X 1994 J. Phys. A 27 407
[9] Zhao X Q, Tang D B and Wang L M 2005 Phys. Lett. A
346 288
[10] Ding S S, Sun W J and Zhu D C 2008 Appl. Math.
Comput. 199 268
[11] Zhang D J and Chen D Y 2004 J. Phys. A 37
851
[12] Xu X G, Meng X H and Gao Y T 2008 Nonlinear
Anal. (submitted)
[13] Hirota R 2004 The Direct Method in Soliton Theory
(Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 3890-3893
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 3890-3893
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 3890-3893
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 3890-3893
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 3890-3893
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 3890-3893
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 3890-3893
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 3890-3893
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 3890-3893
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 3890-3893
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 3890-3893
[12] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3890-3893
[13] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 3890-3893
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 3890-3893
[15] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 3890-3893
Viewed
Full text


Abstract