Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 3879-3882    DOI:
Original Articles |
Bursting Ca2+ Oscillations and Synchronization in Coupled Cells
JI Quan-Bao1,2, LU Qi-Shao1, Yang Zhuo-Qin1, Duan Li-Xia3
1School of Science, Beijing University of Aeronautics and Astronautics, Beijing 1001912Mathematic Department, Huainan Normal University, Huainan 2320013College of Science, North China University of Technology, Beijing 100144
Cite this article:   
JI Quan-Bao, LU Qi-Shao, Yang Zhuo-Qin et al  2008 Chin. Phys. Lett. 25 3879-3882
Download: PDF(443KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A mathematical model proposed by Grubelnk et al. [ Biophys. Chem. 94 (2001) 59] is employed to study the physiological role of mitochondria and the cytosolic proteins in generating complex Ca2+ oscillations. Intracellular bursting calcium oscillations of point--point, point--cycle and two-folded limit cycle types are observed and explanations are given based on the fast/slow dynamical analysis, especially for point--cycle and two-folded limit cycle types, which have not been reported before. Furthermore, synchronization of coupled bursters of Ca2+ oscillations via gap junctions and the effect of bursting types on synchronization of coupled cells are studied. It is argued that bursting oscillations of point--point type may be superior to achieve synchronization than that of point--cycle type.
Keywords: 05.45.-a      82.40.Bj     
Received: 06 July 2008      Published: 25 October 2008
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/03879
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JI Quan-Bao
LU Qi-Shao
Yang Zhuo-Qin
Duan Li-Xia
[1] Cuthbertson K S 1985 Nature 316 541
[2] Woods N M 1986 Nature 319 600
[3] Berridge M J Bootman M D and Lipp P 1998 Nature
395 645
[4] Izhikevich E M 2000 Int. J. Bifur. Chaos 10
1171
[5] Rinzel J 1985 Lecture Notes Math. (Berlin: Springer)
[6] Marhl M Haberichter T and Brumen M 2000 Biosystems
57 75
[7] Grubelnk V Larsen A Z Kummer U Olsen L F and Marhl M 2001
Biophys. Chem. 94 59
[8] Perc M and Marhl M 2003 Chaos, Solitons Fractals
18 759
[9] Zhang F Lu Q S and Duan L X 2007 Chin. Phys. Lett.
12 3344
[10] Borghans G and Dupont A 1997 Biophys. Chem.
66 25
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 3879-3882
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 3879-3882
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3879-3882
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 3879-3882
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3879-3882
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 3879-3882
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3879-3882
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 3879-3882
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 3879-3882
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3879-3882
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 3879-3882
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 3879-3882
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3879-3882
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 3879-3882
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 3879-3882
Viewed
Full text


Abstract