Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 3875-3878    DOI:
Original Articles |
Synchronization and Pattern Dynamics of Coupled Chaotic Maps on Complex Networks
SHEN Yu, HOU Zhong-Huai, XIN Hou-Wen
Hefei National Lab for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
SHEN Yu, HOU Zhong-Huai, XIN Hou-Wen 2008 Chin. Phys. Lett. 25 3875-3878
Download: PDF(584KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The synchronization and pattern dynamics of coupled logistic maps on a certain type of complex network, constructed by adding random shortcuts to a regular ring, is investigated. For parameters where an isolated map is fully chaotic, the defect turbulence, which is dominant in the regular network, can be tamed into ordered periodic patterns or synchronized chaotic states when random shortcuts are added, and the patterns formed on the complex network can be grouped into two or three branches depending on the coupling strength.

Keywords: 05.45.-a      05.45.Ra     
Received: 27 March 2008      Published: 25 October 2008
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Ra (Coupled map lattices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/03875
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHEN Yu
HOU Zhong-Huai
XIN Hou-Wen
[1] Albert R and Barabasi A L 2002 Rev. Mod. Phys.
74 47
[2] Watts D J and Strogatz S H 1998 Nature 393 440
[3] Barabasi A L and Albert R 1999 Science 286
509
[4] Barahona M and Pecora L M 2002 Phys. Rev. Lett.
89 054101
[5] Motter A E, Zhou C S, and Kurths J 2005 Phys. Rev. E
71 016116
[6] Egu\iluz V M and Klemm K 2002 Phys. Rev. Lett.
89 108701
[7] Albert R, Jeong H and Barabasi A L 2000 Nature
406 378
[8] Lago-fernandez L F, Huerta R, Corbacho F, and
Sig\"{uenza J A 2000 Phys. Rev. Lett. 84 2758
[9] Qi F, Hou Z H, and Xin H W 2003 Phys. Rev. Lett.
91 064102
[10] Hou Z H and Xin H W 2003 Phys. Rev. E 68
055102
[11] Atay F M and Jost J, Wende A 2004 Phys. Rev. Lett.
92 144101
[12] Masoller C and Mart\i A C 2005 Phys. Rev. Lett.
94 134102
[13] Gade P M and Hu C K 2000 Phys. Rev. E 62
6409
[14] Jost J and Joy M P 2001 Phys. Rev. E 65
016201
[15] Lind P G, Gallas J A C and Herrmann H J 2004 Phy.
Rev. E 70 056207
[16] Newman M E J, Moore C and Watts D J 2000 Phys. Rev.
Lett. 84 3201
[17] Pecora L M and Carroll T L 1998 Phys. Rev. Lett.
80 2109
[18] Wang M S, Hou Z H and Xin H W 2006 Chem. Phys.
Chem. 7 579
[19] Kaneko K 1989 Physica D 34 1
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 3875-3878
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 3875-3878
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3875-3878
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 3875-3878
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3875-3878
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 3875-3878
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3875-3878
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 3875-3878
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 3875-3878
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3875-3878
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 3875-3878
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 3875-3878
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3875-3878
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 3875-3878
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 3875-3878
Viewed
Full text


Abstract