Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 3871-3874    DOI:
Original Articles |
Two-Layer Feedback Neural Networks with Associative Memories
WU Gui-Kun, ZHAO Hong
Department of Physics, and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005
Cite this article:   
WU Gui-Kun, ZHAO Hong 2008 Chin. Phys. Lett. 25 3871-3874
Download: PDF(1194KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We construct a two-layer feedback neural network by a Monte Carlo based algorithm to store memories as fixed-point attractors or as limit-cycle attractors. Special attention is focused on comparing the dynamics of the network with limit-cycle attractors and with fixed-point attractors. It is found that the former has better retrieval property than the latter. Particularly, spurious memories may be suppressed completely when the memories are stored as a long-limit cycle. Potential application of limit-cycle-attractor networks is discussed briefly.
Keywords: 05.45.-a      84.35.+i     
Received: 25 April 2008      Published: 25 October 2008
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  84.35.+i (Neural networks)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/03871
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Gui-Kun
ZHAO Hong
[1] Hopfield J J 1982 Proc. Natl. Acad. Sci. U.S.A.
79 2554
[2] Hopfield J J 1984 Proc. Natl. Acad. Sci. U.S.A.
81 3088
[3] Amit D J 1989 Modeling Brain Function: The World of
Attractor Neural Networks (New York: Cambridge University Press)
chap 2 p58
[4] Haykin S 1998 Neural Networks: A Comprehensive
Foundation (Upper Saddle River: Prentice Hall) chap 14 p664
[5] Mandan M G, Liang J and Noriyasu H 2003 Static and
Dynamic Neural Networks: From Fundamentals to Advanced Theory
(Hoboken: Wiley--IEEE) chap 9 p 345
[6] Zhao H 2004 Phys. Rev. E 70 066137
[7] Zhou Z and Zhao H 2006 Chin. Phys. Lett. 23
1402
[8] Bauer U and Krey U 1990 Z. Phys. B 79 461
[9] Coolen A C C and Sherrington D 1992 J. Phys. A: Math.
Gen. 25 5493
[10] Kawamura M and Okada M 2002 J. Phys. A: Math. Gen
35 253
[11] Miyoshi S, Yanai H F and Okada M 2002
arXiv:cond-mat/0209258
[12] Sompolinsky H and Kanter I 1986 Phys. Rev. Lett.
57 2861
[13] Amit D J, Gutfreund H and Sompolinsky H 1985 Phys.
Rev. A 32 1007
[14] Amit D J, Gutfreund H and Sompolinsky H 1985 Phys.
Rev. Lett. 55 1530
[15] Shuai J, Chen Z, Liu R and Wu B 1996 Chin. Phys.
Lett. 13 185
[16] Hopfield J J and Tank D W 1985 Biological
Cybernetics 52 141
[17] Tank D W and Hopfield J J 1986 IEEE Transactions on
Circuits and Systems 33 533
[18] Jin T and Zhao H 2005 Phys. Rev. E 72 066111
[19] Zhang J and Xiao X 2000 Chin. Phys. Lett. 17
88
[20] Zhao H 2006 arXiv:physics/0607046
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 3871-3874
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 3871-3874
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3871-3874
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 3871-3874
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3871-3874
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 3871-3874
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3871-3874
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 3871-3874
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 3871-3874
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3871-3874
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 3871-3874
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 3871-3874
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 3871-3874
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3871-3874
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 3871-3874
Viewed
Full text


Abstract