Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 3860-3863    DOI:
Original Articles |
Quantum Secure Direct Communication Based on Authentication
WANG Min-Jie, PAN Wei
Department of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031
Cite this article:   
WANG Min-Jie, PAN Wei 2008 Chin. Phys. Lett. 25 3860-3863
Download: PDF(208KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose two schemes of quantum secure direct communication (QSDC) combined ideas of user authentication [Phys. Rev. A 73(2006)042305] and direct communication with dense coding [Phys. Rev. A. 68(2003)042317]. In these protocols, the privacy of authentication keys and the properties of the EPR pairs not only ensure the realization of identity authentication but also further improve the security of communication, and no secret messages are leaked even if the messages were broken.
Keywords: 03.67.Hk      03.67.Dd     
Received: 18 July 2008      Published: 25 October 2008
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/03860
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Min-Jie
PAN Wei
[1] Bennett C H and Brassard G 1984 Proceedings of the
IEEE International Conference on Computers, Systems and Signal
Processing (New York: IEEE) p 175
[2] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[3] Ekert A 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H, Brassard G and Mermin N D 1992 Phys.
Rev. Lett. 68 557
[5] Koashi M and Imoto N 1997 Phys. Rev. Lett.
79 2383
[6] Bruss D 1998 Phys. Rev. Lett. 81 3018
[7] Hwang W Y et al 1998 Phys. Lett. A 244 489
[8] Gisin N et al 2002 Rev. Mod. Phys. 74 145
[9] Xue P, Li C F and Guo G C 2002 Phys. Rev. A
65 022317
[10] Cabello A 2000 Phys. Rev. Lett. 85 5635
[11] He G Q and Zeng G H 2006 Chin. Phys. 15 1284
[12] Beige A et al 2002 Acta. Phys. Pol. A 101
357
[13] Shi B S et al 2002 Appl. Phys. B: Laser Opt. B
70 022317
[14] Bostr\"{oem K et al 2002 Phys. Rev. Lett.
89 187902
[15] Deng F G et al 2003 Phys. Rev. A 68 042317
[16] Deng F G and Long G L 2004 Phys. Rev. A 69
052319
[17] Cai Q Y and Li B W 2004 Chin. Phys. Lett.
21 601
[18] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys.
Lett. 22 18
[19] Lucamarini M and Mancini S 2005 Phys. Rev. Lett.
94 140501
[20] Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys.
Rev. A 73 022338
[21] Li X H et al 2006 Chin. Phys. Lett. 23 1080
[22] Cao H J and Song H S 2006 Chin. Phys. Lett.
23 290
[23] He G Q, Zhu J and Zeng G H 2006 Phys. Rev. A
73 012314
[24] Cai Q Y and Lv H 2007 Chin. Phys. Lett. 24
1154
[25] Cai Q Y 2003 Phys. Rev. Lett. 91 109801
[26] Bostr\"{oem K and Felbinger T 2008 Phys.\ Lett.\ A
372 3953
[27] {W\'{ojcik A 2003 Phys. Rev. Lett. 90
157901
[28] Peev M, N\"{olle M, Maurhardt O, Lor\"{unser T, Suda M,
Poppe A, Ursin R, Fedrizzi A and Zeilinger A arXiv quant-ph/0407131
[29] Lee H, Lim J and Yang H 2006 Phys. Rev. A
73 042305
[30] Zhang Z J, Liu J, Wang D and Shi S H 2007 Phys.
Rev. A 75 026301
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 3860-3863
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 3860-3863
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 3860-3863
[4] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 3860-3863
[5] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 3860-3863
[6] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 3860-3863
[7] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 3860-3863
[8] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 3860-3863
[9] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 3860-3863
[10] SHI Run-Hua, **, HUANG Liu-Sheng, YANG Wei, ZHONG Hong . A Novel Multiparty Quantum Secret Sharing Scheme of Secure Direct Communication Based on Bell States and Bell Measurements[J]. Chin. Phys. Lett., 2011, 28(5): 3860-3863
[11] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 3860-3863
[12] LI Hong-Rong**, LI Fu-Li, ZHU Shi-Yao . Quantum Nonlocally Correlated Observables for Non-Gaussian States[J]. Chin. Phys. Lett., 2011, 28(5): 3860-3863
[13] HAN Jia-Jia, SUN Shi-Hai, LIANG Lin-Mei** . A Three-Node QKD Network Based on a Two-Way QKD System[J]. Chin. Phys. Lett., 2011, 28(4): 3860-3863
[14] WANG Tie-Jun, , LI Tao, DU Fang-Fang, DENG Fu-Guo** . High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement[J]. Chin. Phys. Lett., 2011, 28(4): 3860-3863
[15] LIN Song, **, GAO Fei, LIU Xiao-Fen, . Quantum Secure Direct Communication with Five-Qubit Entangled State[J]. Chin. Phys. Lett., 2011, 28(3): 3860-3863
Viewed
Full text


Abstract