Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 3852-3855    DOI:
Original Articles |
Nonadiabatic Geometric Phase in Composite Systems and Its Subsystem
LI Xin
Faculty of Science, Kunming University of Science and Technology, Kunming 650093
Cite this article:   
LI Xin 2008 Chin. Phys. Lett. 25 3852-3855
Download: PDF(226KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We point out that the time-dependent gauge transformation technique may be effective in investigating the nonadiabatic geometric phase of a subsystem in a composite system. As an example, we consider two uniaxially coupled spin -1/2 particles with one of particles driven by rotating magnetic field. The influences of coupling and precession frequency of the magnetic field on geometric phase are also discussed in detail.

Keywords: 03.65.Vf      03.67.-w      03.67.-a     
Received: 08 August 2008      Published: 25 October 2008
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.67.-w  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/03852
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xin
[1] Berry M 1984 Proc. R. Soc. A 392 45
[2] Simon B 1983 Phys. Rev. Lett. 51 2167
[3] Aharonov Y and Anandan J 1987 Phys. Rev. Lett.
58 1593
[4] Samuel J and Bhandari R 1988 Phys. Rev. Lett.
60 2339
[5] Fuentes-Guridi I, Carollo A, Bose S and Vedral V 2002
Phys. Rev. Lett. 89 220404
[6] Wong H M, Cheng K M and Chu M C 2005 Phys. Rev.
Lett. 94 070406
[7] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2003
Phys. Rev. Lett. 90 160402
[8] Manini N and Pistolesi F 2000 Phys. Rev. Lett
85 3067
[9] Macchiavello C, Palma G M and Zeilinger A 2000
Quantum Computation and Quantum Information Theory (Singapore:
World Scientific)
[10] Jones J A, Vedral V, Ekert A and Castagnoll G 2000
Nature 403 869
[11] Yusa G, Muraki K, Takashina K, Hashimoto K and Hirayama Y
2005 Nature 434 1001
[12] Uhlmann A 1986 Rep. Math. Phys. 24 229 Uhlmann A 1991 Lett. Math. Phys. 21 229 Uhlmann A 1996 J. Geom. Phys. 18 76
[13] Sj\"{oqvist E, Pati A K, Ekert A, Anandan J S, Ericsson
M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845
[14] Du J F, Zou P, Shi M, Kwek L C, Pan J W, Oh C H, Ekert A,
Oi D K L and Ericson M 2003 Phys. Rev. Lett. 91 100403
[15] Singh K, Tong D M, Basu K, Chen J L and Du J F 2003
Phys. Rev. A 67 032106
[16] Tong D M, Sj\"{oqvist E, Kwek L C, Oh C H and Ericsson M
2003 Phys. Rev. A 68 022106
[17] Yi X X, Wang L C and Zheng T Y 2004 Phys. Rev.
Lett. 92 150406
[18] Zanardi P and Rasetti M 1999 Phys. Lett. A
264 94
[19] Liang J Q and M\"{uller-Kirsten H J W 1992 Ann.
Phys. (N.Y.) 219 42
[20] Yi X X and Sj\"{oqvist E 2004 Phys. Rev. A
70 042104
[21] Mukunda N and Simon R 1993 Ann. Phys. (N.Y.)
228 205
[22] For a review, see Laflamme R et al Preprint
quant-ph/0207172
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 3852-3855
[2] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 3852-3855
[3] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 3852-3855
[4] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 3852-3855
[5] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 3852-3855
[6] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 3852-3855
[7] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 3852-3855
[8] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 3852-3855
[9] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3852-3855
[10] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 3852-3855
[11] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 3852-3855
[12] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 3852-3855
[13] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 3852-3855
[14] JI Wei-Bang, WAN Jin-Yin, CHENG Hua-Dong, LIU Liang** . An Optimum Method for a Grooved 2D Planar Ion Trap Design[J]. Chin. Phys. Lett., 2011, 28(7): 3852-3855
[15] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 3852-3855
Viewed
Full text


Abstract