Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 3848-3851    DOI:
Original Articles |
Exact Solutions of the Dirac Equation for an Electron in a Magnetic Field with Shape Invariant Method
M. R. Setare, O. Hatami
Department of Science, University of Kurdistan, Pasdaran Ave., Sanandaj, Iran
Cite this article:   
M. R. Setare, O. Hatami 2008 Chin. Phys. Lett. 25 3848-3851
Download: PDF(169KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the shape invariance property we obtain exact solutions of the Dirac equation for an electron moving in the presence of a certain varying magnetic field, then we also show its non-relativistic limit.
Keywords: 03.65.Ge      03.65.Pm     
Received: 01 August 2008      Published: 25 October 2008
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/03848
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. R. Setare
O. Hatami
[1] Greiner W 2000 Relativistic Quantum Mechanics
(Berlin: Springer)
[2] Zou X, Yi L Zh and Jia Ch Sh 2005 Phys. Lett. A
346 54
[3] Zhang X C, Liu Q W, Jia C S and Wang L Z 2005 Phys.
Lett. A 340 59
[4] Rodrigues R de Lima 2004 Phys. Lett. A 326 42
[5] Jana T and Roy P 2007 Phys. Lett. A 361 55
[6] Chen G, Chen Z and Xuan P 2006 Phys. Lett. A
352 317
[7] Setare M R and Olfati Gh 2007 Physica Scripta
75 250
[8] Karmadeva M Preprint math-ph/0306069
[9] Witten E 1981 Nucl. Phys. B 188 513
[10] Cooper F and Freeman B 1983 Ann. Phys. 146
262
[11] Gendenshtein L 1983 JETP Lett. 38 356
[12] Cooper F, Khare A and Sukhatme U 2001 Supersymmetry
in Quantum Mechanics (Singapore: World Scientific)
[13] Gangopadhyaya A and Sukhatme U 1996 Phys. Lett. A
224 5
[14] Filho E D and Ricotta R M 2004 J. Phys. A 37
1057
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 3848-3851
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 3848-3851
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3848-3851
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 3848-3851
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3848-3851
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3848-3851
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 3848-3851
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 3848-3851
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 3848-3851
[10] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 3848-3851
[11] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 3848-3851
[12] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 3848-3851
[13] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 3848-3851
[14] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 3848-3851
[15] Marina-Aura Dariescu**, Ciprian Dariescu, Ovidiu Buhucianu . Charged Scalars in Transient Stellar Electromagnetic Fields[J]. Chin. Phys. Lett., 2011, 28(1): 3848-3851
Viewed
Full text


Abstract