Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 3844-3847    DOI:
Original Articles |
Periodic Wave Solutions of Generalized Derivative Nonlinear Schrödinger Equation
ZHA Qi-Lao1,2, LI Zhi-Bin1
1Department of Computer Science, East China Normal University, Shanghai 2000622College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022
Cite this article:   
ZHA Qi-Lao, LI Zhi-Bin 2008 Chin. Phys. Lett. 25 3844-3847
Download: PDF(604KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A Darboux transformation of the generalized derivative nonlinear Schrödinger equation is derived. As an application, some new periodic wave solutions of the generalized derivative nonlinear Schrödinger equation are explicitly given.
Keywords: 03.40.Kf      02.90.Jr     
Received: 27 June 2008      Published: 25 October 2008
PACS:  03.40.Kf  
  02.90.Jr  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/03844
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHA Qi-Lao
LI Zhi-Bin
[1] Ablowitz M J and Clarkson P A 1991 Soliton,
Nonlinear Evolution Equations and Inverse Scattering (Cambridge:
Cambridge University Press)
[2] Konno K and Oono H 1994 J. Phys. Soc. Jpn. 63
377
[3] Hirota R 2004 The Direct Method in Soliton Theory
(Cambridge: Cambridge University Press)
[4] Rogers C and Schief W K 2002 B$\ddot{a$cklund and
Darboux transformations Geometry and Modern Application in Soliton
Theroy (Cambridge: Cambridge University Press)
[5] Matveev V B and Salle M A 1991 Darboux transformation
and Solitons (Berlin: Springer)
[6] Levi D, Neugebaurer G and Meinel R 1984 Phys.
Lett. A 102 1
[7] Gu C H, Hu H S and Zhou Z X 2005 Darboux
Transformation in Soliton Theory and Its Geometric Applications
(Shanghai: Shanghai Science and Technology Publishing House) (in
Chinese)
[8] Li Y S and Zhang J E 2001 Phys. Lett. A 284
253
[9] Lou S Y and Li Y S 2006 Chin. Phys. Lett. 23
2633
[10] Zhou Z X 1998 J. Math. Phys. 39 986
[11] Geng X G and Tam H W 1999 J. Phys. Soc. Jpn.
68 1508
[12] Fan E G 2002 Commun. Theor. Phys. 37 145
[13] Zhou Z J and Li Z B 2003 Commun. Theor. Phys.
39 257
[14] Chen A H and Li X M 2007 Phys. Lett. A 370
281
[15] Yan Z Y and Zhang H Q 2002 Chaos, Solitons and
Fractals 13 1439
[16] Yan Z Y 2002 Chaos, Solitons and Fractals 14
441
[17] Luo L 2007 J. Phys. A: Math. Theor. 40 4169
[18] Ma W X and Zhou R G 1999 J. Phys. A: Math. Gen.
32 L239
Related articles from Frontiers Journals
[1] YUAN Jin-Hui, YU Chong-Xiu, SANG Xin-Zhu, LI Wen-Jing, ZHOU Gui-Yao, LI Shu-Guang, HOU Lan-Tian. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths[J]. Chin. Phys. Lett., 2009, 26(3): 3844-3847
[2] ZHA Qi-Lao, LI Zhi-Bin. Darboux Transformation and Multi-Solitons for Complex mKdV Equation[J]. Chin. Phys. Lett., 2008, 25(1): 3844-3847
[3] WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel[J]. Chin. Phys. Lett., 2007, 24(10): 3844-3847
[4] LIN Ji, CHENG Xue-Ping, YE Li-Jun. Soliton and Periodic Travelling Wave Solutions for Quadratic Nonlinear Media[J]. Chin. Phys. Lett., 2006, 23(1): 3844-3847
[5] XU You-Sheng, ZHONG Yi-Jun, HUANG Guo-Xiang. Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media[J]. Chin. Phys. Lett., 2004, 21(7): 3844-3847
[6] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 3844-3847
[7] XU You-Sheng, , LIU Yang, HUANG Guo-Xiang. Using Digital Imaging to Characterize Threshold Dynamic Parameters in Porous Media Based on Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2004, 21(12): 3844-3847
[8] QU Chang-Zheng, YAO Ruo-Xia, LI Zhi-Bin. Two-Component Wadati--Konno--Ichikawa Equation and Its Symmetry Reductions[J]. Chin. Phys. Lett., 2004, 21(11): 3844-3847
[9] ZHENG Chun-Long, , ZHANG Jie-Fang, HUANG Wen-Hua, CHEN Li-Qun. Peakon and Foldon Excitations In a (2+1)-Dimensional Breaking Soliton System[J]. Chin. Phys. Lett., 2003, 20(6): 3844-3847
[10] ZHANG Jie-Fang, ZHENG Chun-Long, MENG Jian-Ping, FANG Jian-Ping. Chaotic Dynamical Behaviour in Soliton Solutions for a New (2+1)-Dimensional Long Dispersive Wave System[J]. Chin. Phys. Lett., 2003, 20(4): 3844-3847
[11] ZHENG Chun-Long, , ZHANG Jie-Fang, SHENG Zheng-Mao. Chaos and Fractals in a (2+1)-Dimensional Soliton System[J]. Chin. Phys. Lett., 2003, 20(3): 3844-3847
[12] LIU Yin-Ping, LI Zhi-Bin. An Automated Algebraic Method for Finding a Series of Exact Travelling Wave Solutions of Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2003, 20(3): 3844-3847
[13] WANG Feng-Jiao, TANG Yi. Small Amplitude Solitons in the Higher Order Nonlinear Schrödinger Equation in an Optical Fibre[J]. Chin. Phys. Lett., 2003, 20(10): 3844-3847
[14] LIU Yin-Ping, LI Zhi-Bin. An Automated Jacobi Elliptic Function Method for Finding Periodic Wave Solutions to Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2002, 19(9): 3844-3847
[15] TANG Xiao-Yan, HU Heng-Chun,. Characteristic Manifold and Painlevé Integrability: Fifth-Order Schwarzian Korteweg-de Type Equation[J]. Chin. Phys. Lett., 2002, 19(9): 3844-3847
Viewed
Full text


Abstract