Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 3837-3839    DOI:
Original Articles |
large Last Multiplier of Generalized Hamilton System
MEI Feng-Xiang, SHANG Mei
School of Science, Beijing Institute of Technology, Beijing 100081
Cite this article:   
MEI Feng-Xiang, SHANG Mei 2008 Chin. Phys. Lett. 25 3837-3839
Download: PDF(264KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study an application of the Jacobi last multiplier to a generalized Hamilton system. A partial differential equation on the last multiplier of the system is established. The last multiplier can be found by the equation. If the quantity of integrals of the system is sufficient, the solution of the system can be found by the last multiplier.
Keywords: 02.30.Hq      02.30.Ik      02.30.Rz     
Received: 07 June 2008      Published: 25 October 2008
PACS:  02.30.Hq (Ordinary differential equations)  
  02.30.Ik (Integrable systems)  
  02.30.Rz (Integral equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/03837
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MEI Feng-Xiang
SHANG Mei
[1] Pauli W 1953 Nuovo Cimento 10 648
[2] Martin J L 1959 Proc. Roy. Soc. London A 251
536
[3] Liu D, Mei F X and Chen B 1992 Applications of
Modern Mathematical Theory and Method to Dynamics, Vibration and
Control (Beijing: Science Press) (in Chinese)
[4] Li J B, Zhao X H and Liu Z R 1994 Theory and
Application of Generalized Hamilton System (Beijing: Science Press)
(in Chinese)
[5] Mei F X 2004 Symmetries and Conserved Quantities of
Constrained Mechanical Systems (Beijing: Beijing Institute of
Technology Press) (in Chinese)
[6] Chen X W, Shang M and Mei F X 2001 Chin. Phys.
10 997
[7] Wang S Y and Mei F X 2002 Chin. Phys. 11 5
[8] Luo S K, Chen X W and Guo Y X 2002 Chin. Phys.
11 523
[9] Qiao Y F, Zhang Y L and Han G C 2002 Chin. Phys.
11 988
[10] Wu H B 2004 Chin. Phys. 13 589
[11] Fang J H, Liao Y P and Peng Y 2004 Chin. Phys.
13 1620
[12] Xu X J, Qin M C and Mei F X 2005 Chin. Phys.
14 1287
[13] Wu H B and Mei F X 2005 Chin. Phys. 14 2391
[14] Fu J L, Chen L Q and Chen X W 2006 Chin. Phys.
15 8
[15] Lou Z M 2006 Chin. Phys. 15 891
[16] Wu H B 2006 Chin. Phys. 15 899
[17] Zheng S W, Jia LQ and Yu H S 2006 Chin. Phys.
15 1399
[18] Mei F X, Gang T Q and Xie J F 2006 Chin. Phys. 15
1678
[19] Whittaker E T 1904 A Treatise on the Analytical
Dynamics of Particles and Rigid Bodies (Cambridge: Cambridge
University Press)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 3837-3839
[2] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 3837-3839
[3] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 3837-3839
[4] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3837-3839
[5] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 3837-3839
[6] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 3837-3839
[7] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 3837-3839
[8] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 3837-3839
[9] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 3837-3839
[10] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3837-3839
[11] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3837-3839
[12] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 3837-3839
[13] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 3837-3839
[14] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 3837-3839
[15] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 3837-3839
Viewed
Full text


Abstract