Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3753-3756    DOI:
Original Articles |
Modified SQUID Operator Equation for a Single-Qubit Structure Coupled to a Quantum Resonator
LIANG Bao-Long1, WANG Ji-Suo1, FAN Hong-Yi2,3, MENG Xiang-Guo1
1School of Physics Science and Information Engineering, Liaocheng University, Shandong 2520592Department of Material Science and Engineering, University of Science and Technology of China, Hefei 2300263Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
Cite this article:   
LIANG Bao-Long, WANG Ji-Suo, FAN Hong-Yi et al  2008 Chin. Phys. Lett. 25 3753-3756
Download: PDF(203KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Role of self-inductance in superconducting quantum interference device (SQUID) charge qubit is considered. It is found that when an SQUID charge qubit is coupled to a quantum LC resonator, the SQUID voltage operator equation is modified in accompanying with the modification of operator Faraday equation describing the inductance. It is shown that when the extra energy is applied to the junction, the mean phase will be squeezed according to a damping factor.
Keywords: 73.23.-b      74.50.+r      85.25.Cp     
Received: 20 April 2008      Published: 26 September 2008
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
  85.25.Cp (Josephson devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03753
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Bao-Long
WANG Ji-Suo
FAN Hong-Yi
MENG Xiang-Guo
[1] Pashkin Yu A et al 2003 Nature 421 823
[2] Makhlin Y, Sch\"{on G and Shnirman A 1999 Nature 398 305
[3] Vandersypen L M K et al 2001 Nature 414 883
[4] Gulde S et al 2003 Nature 421 48
[5] Turchette Q A et al 1995 Phys. Rev. Lett. 754710
[6] Josephson B D 1962 Phys. Lett. 1 251 Josephson B D 1964 Rev. Mod. Phys. 36 216 Josephson B D 1965 Adv. Phys. 36 419
[7] Tinkham M 1996 Introduction to Superconductivity 2ndedn (New York: McGraw-Hill) p 256
[8] Vourdas A 1994 Phys. Rev. B 49 12040 Vourdas A 1996 J. Mod. Opt. 43 2105
[9] Nakamura Y et al 1999 Nature 398 786
[10] Ioffe L B et al 1999 Nature 398 679
[11] Mun D K and Sam Y C 2007 Phys. Rev. B 75134514
[12] Johansson J R et al 2006 Phys. Rev. Lett. 97077001
[13] Bouchiat V et al 1999 Journal of Superconductivity 12 789
[14] Shirman A, Sch\"{on G and Hermon Z 1997 Phys. Rev.Lett. 79 2371
[15] You J Q et al 2001 Phys. Rev. B 63 180501
[16] Liang B L et al 2007 Chin. Phys. Lett. 243241
[17] You J Q and Nori F 2005 Phys. Today 58 42
[18] Dirac P A M 1958 The Principle of Quantum Mechanics(Oxford: Oxford University Press) chap 4 p 84
Related articles from Frontiers Journals
[1] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 3753-3756
[2] ZHAO Peng**,LIU De-Sheng,. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2012, 29(4): 3753-3756
[3] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 3753-3756
[4] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 3753-3756
[5] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 3753-3756
[6] PENG Lin**, LIU Yong-Sheng, CAI Chuan-Bing, ZHANG Jin-Cang . Influence of Magnetic Scattering and Interface Transparency on Superconductivity Based on a Ferromagnet/Superconductor Heterostructure[J]. Chin. Phys. Lett., 2011, 28(8): 3753-3756
[7] XU Qin-Yin, CAO Chun-Hai, LI Meng-Yue, JIANG Yi, ZHA Shi-Tong, KANG Lin, XU Wei-Wei, CHEN Jian**, WU Pei-Heng . Fabrication of High-Quality Niobium Superconducting Tunnel Junctions[J]. Chin. Phys. Lett., 2011, 28(8): 3753-3756
[8] LIAO Qing-Hong, FANG Guang-Yu, WANG Ji-Cheng, AHMAD Muhammad Ashfaq, LIU Shu-Tian** . Control of the Entanglement between Two Josephson Charge Qubits[J]. Chin. Phys. Lett., 2011, 28(6): 3753-3756
[9] WANG Zheng**, FAN Bin, ZHAO Xin-Jie, YUE Hong-Wei, HE Ming, JI Lu, YAN Shao-Lin, FANG Lan, Klushin A. M. . Characteristics of Off-Chip Millimeter-Wave Radiation from Serial Josephson Junction Arrays[J]. Chin. Phys. Lett., 2011, 28(6): 3753-3756
[10] TIAN Li-Jun, **, QIN Li-Guo, ZHANG Hong-Biao . Entanglement of Two-Superconducting-Qubit System Coupled with a Fixed Capacitor[J]. Chin. Phys. Lett., 2011, 28(5): 3753-3756
[11] ZHAO Peng**, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong . Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction[J]. Chin. Phys. Lett., 2011, 28(4): 3753-3756
[12] FAN Bin, WANG Zheng, YUE Hong-Wei, YAN Shao-Lin**, JI Lu, HE Ming, SONG Feng-Bin, FANG Lan, ZHAO Xin-Jie . Coupling of a Tl2Ba2CaCu2O8 Thin Film Intrinsic Josephson Junction and a Fabry–Perot Resonator[J]. Chin. Phys. Lett., 2011, 28(3): 3753-3756
[13] ZHENG Ji-Ming, HUANG Yao-Qing**, REN Zhao-Yu, YANG Hui-Jing, CAO Mao-Sheng** . Electronic Non-Resonant Tunneling through Diaminoacenes: A First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(2): 3753-3756
[14] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 3753-3756
[15] XUE Peng . Quantum Memory via Wigner Crystals of Polar Molecules[J]. Chin. Phys. Lett., 2011, 28(12): 3753-3756
Viewed
Full text


Abstract