Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3746-3749    DOI:
Original Articles |
Electronic Raman Scattering in Graphene
LU Hong-Yan, WANG Qiang-Hua
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
LU Hong-Yan, WANG Qiang-Hua 2008 Chin. Phys. Lett. 25 3746-3749
Download: PDF(413KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Linear dispersion near the Dirac points in the band structure of graphenes can give rise to novel physical properties. We calculate the electronic contribution to the Raman spectra in graphenes, which also shows novel features. In the clean limit, the Raman spectrum in the undoped graphene is linear (with a universal slope against impurity scattering) at low energy due to the linear dispersion near the Dirac points, and it peaks at a position corresponding to the van Hove singularity in the band structure. In a doped graphene, the electronic Raman absorption is forbidden up to a vertical inter-band particle--hole gap. Beyond the gap the spectrum follows the undoped case. In the presence of impurities, absorption within the gap (in the otherwise clean case) is induced, which is identified as the intra-band contribution. The Drude-like intra-band contribution is seen to be comparable to the higher energy inter-band Raman peak. The results are discussed in connection to experiments.
Keywords: 72.80.Rj      78.67.-n      73.20.-r     
Received: 15 April 2008      Published: 26 September 2008
PACS:  72.80.Rj (Fullerenes and related materials)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  73.20.-r (Electron states at surfaces and interfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03746
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Hong-Yan
WANG Qiang-Hua
[1] Novoselov K S et al 2004 Science 306 666
[2] Novoselov K S et al 2005 Proc. Natl. Acad. Sci. 102 10451
[3] Wallace P R 1947 Phys. Rev. 71 622
[4] Semenoff G W 1984 Phys. Rev. Lett. 53 2449
[5] Novoselov K S et al 2005 Nature 438 197 Zhang Y, Tan W Y, Stormer H L and Kim P 2005 Nature 438 201
[6] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420 Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
[7] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[8] Calogeracos A and Dombey N 1999 Contemp. phys. 40 313
[9] Itzykson C and Zubber J B 2006 Quantum Field Theory(Dover)
[10] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat.phys. 3 172
[11] Heersche H B et al 2007 Nature 446 56
[12] Geim A K and Novoselov K S 2007 Nat. Mater. 6183
[13] Neto A H C et al 2007 cond-mat/0709.1163
[14] Devereaux T P and Hackl R 2007 Rev. Mod. Phys. 79 175
[15] Lu H Y and Wang Q H 2007 Phys. Rev. B 75094502
[16] Reich S, Maultzsch J, and Thomsen C 2002 Phys. Rev.B 66 035412
[17] Wang J B, He X M, Tan F and Wang Q H 2006 Phys.Rev. B 73 092510
[18] Ferrari A C et al 2006 Phys. Rev. Lett. 97187401 Graf D et al 2007 Nano Lett. 7 238 Yan J et al 2007 Phys. Rev. Lett. 98 166802
Related articles from Frontiers Journals
[1] WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer[J]. Chin. Phys. Lett., 2012, 29(6): 3746-3749
[2] CHEN Shun-Sheng, YANG Chang-Ping, LUO Xiao-Jing, Bä, rner K., Medvedeva I. V.. Alternating-Current Transport Properties of the Interface between Nd0.7Sr0.3MnO3 Ceramic and a Ag Electrode[J]. Chin. Phys. Lett., 2012, 29(2): 3746-3749
[3] ZHENG Zhong-Kui, DUANMU Qing-Duo**, ZHAO Dong-Xu**, WANG Li-Dan, SHEN De-Zhen. The Annealing-Induced Shape Deformation of Hydrothermal-Grown ZnO Nanorods[J]. Chin. Phys. Lett., 2012, 29(1): 3746-3749
[4] SIB KRISHNA Ghoshal**, M. R. Sahar, M. S. Rohani . Dielectric Function of Silicon Nanoclusters: Role of Hydrogen[J]. Chin. Phys. Lett., 2011, 28(9): 3746-3749
[5] LIU Yan, AO Zhi-Min**, WANG Tao**, WANG Wen-Bo, SHENG Kuang, YU Bin, . Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field[J]. Chin. Phys. Lett., 2011, 28(8): 3746-3749
[6] LU Zhi-Xin, YU Li, **, LIU Bing-Can, , ZHANG Kai, SONG Gang, . Femtosecond Pulse Propagation in a Symmetric Gap Surface Plasmon Polariton Waveguide[J]. Chin. Phys. Lett., 2011, 28(8): 3746-3749
[7] WANG Lin-Jun, CAO Gang, TU Tao**, LI Hai-Ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping** . Ground States and Excited States in a Tunable Graphene Quantum Dot[J]. Chin. Phys. Lett., 2011, 28(6): 3746-3749
[8] CAO Zhi-Shen, PAN Jian, CHEN Zhuo, ZHAN Peng, MIN Nai-Ben, WANG Zhen-Lin** . Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays[J]. Chin. Phys. Lett., 2011, 28(5): 3746-3749
[9] SUN Bao-Qing, GU Ying**, HU Xiao-Yong, GONG Qi-Huang** . A Trade-off between Propagation Length and Light Confinement in Cylindrical Metal-Dielectric Waveguides[J]. Chin. Phys. Lett., 2011, 28(5): 3746-3749
[10] SHI Yan-Li, MEI Feng, YU Ya-Fei, ZHANG Zhi-Ming** . Controlled Phase Gate Based on an Electron Floating on Helium[J]. Chin. Phys. Lett., 2011, 28(5): 3746-3749
[11] MA Li-Li, SHAO Jun**, LÜ, Xiang, GUO Shao-Ling, LU Wei** . Spectral Resolution Effects on the Lineshape of Photoreflectance[J]. Chin. Phys. Lett., 2011, 28(4): 3746-3749
[12] YANG Xin-Rong**, XU Bo, WANG Hai-Fei, ZHAO Guo-Qing, SHI Shu-Hui, SHEN Xiao-Zhi, LI Jun-Feng, WANG Zhan-Guo . Anomalous Temperature Dependence of Photoluminescence in InAs/InAlGaAs/InP Quantum Wire and Dot Hybrid Nanostructures[J]. Chin. Phys. Lett., 2011, 28(2): 3746-3749
[13] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 3746-3749
[14] DENG Yan, SHEN Jing. Photoinduced Reorientation Process and Nonlinear Optical Properties of Ag Nanoparticle Doped Azo Polymer Films[J]. Chin. Phys. Lett., 2010, 27(2): 3746-3749
[15] PANG Fei, YIN Shu-Li, LIANG Xue-Jin, CHEN Dong-Min . Anomalous Magneto-Transport Properties of Epitaxial Single-Crystal Bi Films on Si(111)[J]. Chin. Phys. Lett., 2010, 27(10): 3746-3749
Viewed
Full text


Abstract