Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3728-3731    DOI:
Original Articles |
NO--CO--O2 Reaction on a Metal Catalytic Surface using Eley--Rideal Mechanism
Waqar Ahmad
Physics Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan
Cite this article:   
Waqar Ahmad 2008 Chin. Phys. Lett. 25 3728-3731
Download: PDF(280KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Interactions among the reacting species NO, CO and O2 on metal catalytic surfaces are studied by means of Monte Carlo simulation using the Eley--Rideal (ER) mechanism. The study of this three-component system is important for understanding of the reaction kinetics by varying the relative ratios of the reactants. It is found that contrary to the conventional Langmuir--Hinshelwood (LH) thermal mechanism in which two irreversible phase transitions are obtained between active states and poisoned states, a single phase transition is observed when the ER mechanism is combined with the LH mechanism. The phase diagrams of the surface coverage and the steady state production of CO2, N2 and N2O are evaluated as a function of the partial pressures of the reactants in the gas phase. The continuous production of CO2 starts as soon as the CO pressure is switched on and the second order phase transition at the first critical point is eliminated, which is in agreement with the experimental findings.
Keywords: 64.60.Ht      82.65.+r      83.10.Rs      87.15.Aa     
Received: 10 December 2007      Published: 26 September 2008
PACS:  64.60.Ht (Dynamic critical phenomena)  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
  83.10.Rs (Computer simulation of molecular and particle dynamics)  
  87.15.Aa  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03728
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Waqar Ahmad
[1] Zadanov V P and Kasemo B 1994 Surf. Sci. Rep. 20 111
[2] Marro J and Dickman A 1999 Non-equilibrium Phasetransitions in Lattice Models (Cambridge: Cambridge University Press)
[3] Ahmad W and Baloach M K 2007 Appl. Surf. Sci. 253 8447
[4] Hua D Y and Ma Y Q 2001 Phys. Rev. E 64056102
[5] Hua D Y and Ma Y Q 2002 Chin. Phys. Lett. 19534
[6] Ahmad W et al 2006 Chin. Phys. Lett. 231034
[7] Ziff R M et al 1986 Phys. Rev. Lett. 56 2553
[8] Yaldram K and Khan M A 1992 J. Catal. 131369
[9] Ahmad W et al 2006 Chin. J. Phys. 44 440
[10] Yaldram K et al 1994 J. Catal. 147 96
[11] Jackson B and Persson M 1995 J. Chem. Phys. 103 6257
[12] Meakin P 1990 J. Chem. Phys. 93 2903
[13] Khan K M et al 2002 J. Phys. A: Math. Gen. 35 2713
[14] Fink Th. et al 1991 Surf. Sci. 245 96
[15] von Tol M F H et al 1993 Appl. Surf. Sci. 67 188
[16] Ahmad W et al 2006 Physica A 364 307
[17] Ahmad W et al 2006 Appl. Surf. Sci. 253 600
[18] Nord R S and Evans J W 1990 J. Chem. Phys. 93 8397
[19] Engel T and Ertl G 1979 Adv. Catal. 28 1
[20] Compbell C T et al 1980 J. Chem. Phys. 735862
Related articles from Frontiers Journals
[1] K. Iqbal, A. Basit** . A Monte Carlo Simulation of a Monomer Dimer CO-O2 Catalytic Reaction on the Surface and Subsurface of a Face-centered Cubic Lattice[J]. Chin. Phys. Lett., 2011, 28(4): 3728-3731
[2] HUA Da-Yin, WANG Lie-Yan. Phase Transition of the Pair Contact Process Model in a Fragmented Network[J]. Chin. Phys. Lett., 2010, 27(9): 3728-3731
[3] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamical Simulations on a-C:H Film Growth from C and H Atomic Flux: Effect of Incident Energy[J]. Chin. Phys. Lett., 2010, 27(8): 3728-3731
[4] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamic Simulation on Graphitization and Dehydrogenization of Hydrogenated Carbon Films in Vacuum[J]. Chin. Phys. Lett., 2010, 27(7): 3728-3731
[5] ZHOU Zong-Li, ZHANG Guo-Shun, LOU Ping,. Spin-charge Separation of the Luttinger Model after an Interaction Quench[J]. Chin. Phys. Lett., 2010, 27(6): 3728-3731
[6] YIN Bing, DONG Shun-Le. Molecular Dynamical Simulation of Water/Ice Phase Transitions within Carbon Nanotubes under Various Pressures[J]. Chin. Phys. Lett., 2009, 26(8): 3728-3731
[7] LI Li, ZHANG Xin-Lu, CHEN Li-Xue. Intrinsic Bistability and Critical Slowing in Tm3+/Yb3+ Codoped Laser Crystal with the Photon Avalanche Mechanism[J]. Chin. Phys. Lett., 2009, 26(6): 3728-3731
[8] Waqar Ahmad. Co-Adsorption of CO in NO-CO Reaction on a Metal Catalytic Surface Studied by Computer Simulation[J]. Chin. Phys. Lett., 2009, 26(3): 3728-3731
[9] XU Feng-Dan, LIU Zeng-Rong, ZHANG Zhi-Yong, SHEN Jian-Wei,. Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs[J]. Chin. Phys. Lett., 2009, 26(2): 3728-3731
[10] LEI Xiao-Wei, ZHAO Xiao-Yu. Dynamic Simulation of Kosterlitz-Thouless Transition in Two-Dimensional Fully Frustrated XY Model[J]. Chin. Phys. Lett., 2009, 26(1): 3728-3731
[11] LIU Zheng-Bo, DONG Shun-Le, WANG Lin. Lattice Dynamical Simulation of Guest-Host Interaction in N2 Clathrate Hydrate[J]. Chin. Phys. Lett., 2008, 25(7): 3728-3731
[12] NIE Qing-Miao, ZHOU Wei, LI Hai-Bin, XU Zhi-Jun, CHEN Qing-Hu. Short-Time Dynamical Behaviour of Depinning Transition in the Uniformly Frustrated Two-Dimensional XY Model[J]. Chin. Phys. Lett., 2008, 25(6): 3728-3731
[13] M. Khalid, A. U. Qaisrani, M. G. Ullah. Transient Non-Thermal Mobility of CO for CO--NO Catalytic Reaction on Square Lattice: Monte Carlo Simulation[J]. Chin. Phys. Lett., 2008, 25(4): 3728-3731
[14] SUN Li-Zhen, LUO Meng-Bo. Hard Sphere Diffusion Behaviour of Polymer Translocating through Interacting Pores[J]. Chin. Phys. Lett., 2008, 25(11): 3728-3731
[15] CHEN Ting, HUA Da-Yin, LIN Su. Kinetic Phase Transition in A2+B2 → 2AB Reaction System with Particle Diffusion[J]. Chin. Phys. Lett., 2007, 24(9): 3728-3731
Viewed
Full text


Abstract