Original Articles |
|
|
|
|
Effects of Helium and Oxygen Common Implantation in Silicon Wafer |
LI Bing-Sheng1,2, ZHANG Chong-Hong1, ZHOU Li-Hong1,2, YANG Yi-Tao 1,2 |
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 7300002Graduate School of Chinese Academy of Sciences, Beijing 100049 |
|
Cite this article: |
LI Bing-Sheng, ZHANG Chong-Hong, ZHOU Li-Hong et al 2008 Chin. Phys. Lett. 25 3720-3723 |
|
|
Abstract Defect engineering for SiO2 precipitation is investigated using He-ion implantation as the first stage of separation by implanted oxygen (SIMOX). Cavities are created in Si by implantation with helium ions. After thermal annealing at different temperatures, the sample is implanted with 120keV 8.0×1016cm-2 O ions. The O ion energy is chosen such that the peak of the concentration distribution is centred at the cavity band. For comparison, another sample is implanted with O ions alone. Cross-sectional transmission electron microscopy (XTEM), Fourier transform infrared absorbance spectrometry (FTIR) and atomic force microscopy (AFM) measurements are used to investigate the samples. The results show that a narrow nano-cavity layer is found to be excellent nucleation sites that effectively assisted SiO2 formation and released crystal lattice strain associated with silicon oxidation
|
Keywords:
61.72.-y
61.37.Ps
85.40.Ry
|
|
Received: 02 June 2008
Published: 26 September 2008
|
|
PACS: |
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
61.37.Ps
|
|
|
85.40.Ry
|
(Impurity doping, diffusion and ion implantation technology)
|
|
|
|
|
[1] Cristoloveanu S and Li S S 1995 ElectricalCharacterization of Silicon-on-Insulator Materials and Devices(Boston: Kluwer) [2] Gu M L and Hu M 2006 Piezoelectrics and Acoustooptics 28 236 (in Chinese) [3] Collinge J P 1991 SOI Technology: Materials to VLSI(Dordrecht: Kluwer) [4] Kruseman A C, van Veen A, Schut H, Mijnarends P E andFujinami M 2001 J. Appl. Phys. 90 1179 [5] Tula J, Sik J J and Supapan S 2005 Thin Solid Films 476 303 [6] Duo X Z, Liu W L, Zhang M, Wang L W, Lin C L, Okuyama M,Noda M, Chu Paul K, Hu P G, Wang S X and Wang L M 2001 J. Appl.Phys. 90 3780 [7] Agarwal A, Haynes T E, Venezia C, Holland O W andEaglesham D 1998 J. Appl. Phys. Lett. 72 1086 [8] Chen M, Wang X, Chen J, Liu X H, Dong Y M, Yu Y H and WangX 2002 Appl. Phys. Lett. 80 880 [9] Liu C L 2004 Nucl. Phys. Rev. 21 231(inChinese) [10] David M L, Beaufort M F and Barbot J F 2003 J. Appl.Phys. 93 1438 [11] Harada H 1986 Semiconductor Silicon (Pennington, NJ:Electrochemical Society) [12] El-Ghor M K, Pennycook S J, Namavar F and Karam N H 1990 Appl. Phys. Lett. 57 156 [13] Kogler R, Mucklich A, Vines L , Krecar D, Kuznetsov A andSkorupa W 2007 Nucl. Instrum. Methods B 257 161 [14] Yi W B, Chen J, Chen M, Wang X and Zou S C 2004 Chin. Phys. Lett. 21 149 [15] Zhang M, Duo X Z, Lin X X, Zhou Z Y and Lin C L 1998 J. Function. Mater. Devices 4 13 [16] Ziegler J F, Biersack J P, Littmark U 1984 TheStopping and Range of Ions in Solids (New York: Pergamon) [17] Ono H, Ikarashi T and Ogura A 1998 Appl. Phys.Lett. 72 2853 [18]Borghesi A, Sassella A, Geranzani P, Porrini M and Pivac B2000 Mater. Sci. Engin. B 73 145 [19] Yang S, Li Y X, Ma Q Y, Liu L L, Xu X W, Niu P J, Li Y Z,Niu S L and Li H T 2005 J. Cryst. Growth 280 60 [20] Wade K and Inoue N 1985 J. Cryst. Growth 71111 [21] Evans J H 2002 Nucl. Instrum. Methods B 196125 [22] Frabboni S, Gazzadi G C, Felisari L, Tonini R, Corni Fand Ottaviani G 2004 Appl. Phys. Lett. 85 1683 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|