Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3586-3589    DOI:
Original Articles |
Two-Dimensional Discrete Gap Breathers in a Two-Dimensional Diatomic β Fermi--Pasta--Ulam Lattice
XU Quan1,2, TIAN Qiang2
1Department of Physics, Daqing Normal University, Daqing 1637122Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
XU Quan, TIAN Qiang 2008 Chin. Phys. Lett. 25 3586-3589
Download: PDF(808KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the existence of two-dimensional discrete breathers in a two-dimensional face-centred square lattice consisting of alternating light and heavy atoms, with nearest-neighbour coupling containing quartic soft or hard
nonlinearity. This study is focused on two-dimensional breathers with frequency in the gap that separates the acoustic and optical bands of the phonon spectrum. We demonstrate the possibility of existence of two-dimensional gap breathers by using the numerical method, the local anharmonicity approximation and the rotating wave approximation. We obtain six types of two-dimensional gap breathers, i.e., symmetric, mirror-symmetric and asymmetric, no matter whether the centre of the breather is on a light or a heavy atom.
Keywords: 05.45.Xt      20.30.Jr      63.20.Pw      63.20.Ry     
Received: 13 May 2008      Published: 26 September 2008
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  20.30.Jr  
  63.20.Pw (Localized modes)  
  63.20.Ry (Anharmonic lattice modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03586
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Quan
TIAN Qiang
[1] Fermi E et al 1955 Los Alamos Report LA 1940
[2] Livi R et al 1997 Nonlinearity 10 1421
[3] Cretegny T, Livi R and Spicci M 1998 Physica D 119 88
[4] Maniadis F et al 2003 Phys. Rev. E 67 046612
[5] James G and Noble P 2004 Physica D 196 124
[6] Butt I A et al 2006 J. Phys. A: Math. Gen. 39 4955
[7] Bao F F and Takuji K 2007 Wave Motion 45 68
[8] Xu Q and Tian Q 2005 Sci. Chin. G 48 150
[9] Xu Q and Tian Q 2005 Chin. Sci. Bull. 50 5
[10] Mackay R S and Aubry S 1994 Nonlinearity 71623
[11] Aubry S 1994 Physica D 71 196
[12] Aubry S 1995 Physica D 86 248
[13] Marin J L and Aubry S 1996 Nonlinearity 91501
[14] Aubry S 1997 Physica D 103 201
[15] Marin J L et al 1998 Physica D 113 283
[16] Alvarez A et al 2002 New J. Phys. 4 72.1
[17] Xu Q and Tian Q 2008 Chin. Phys. 17 1331
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 3586-3589
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3586-3589
[3] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 3586-3589
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 3586-3589
[5] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3586-3589
[6] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 3586-3589
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 3586-3589
[8] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 3586-3589
[9] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 3586-3589
[10] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 3586-3589
[11] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 3586-3589
[12] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 3586-3589
[13] LI Mei-Sheng**, ZHANG Hong-Hui, ZHAO Yong, SHI Xia . Synchronization of Coupled Neurons Controlled by a Pacemaker[J]. Chin. Phys. Lett., 2011, 28(1): 3586-3589
[14] SUN Zhi-Qiang, XIE Ping, LI Wei, WANG Peng-Ye. Spiking Regularity and Coherence in Complex Hodgkin-Huxley Neuron Networks[J]. Chin. Phys. Lett., 2010, 27(8): 3586-3589
[15] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 3586-3589
Viewed
Full text


Abstract