Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3582-3585    DOI:
Original Articles |
Control Chaos in Hindmarsh--Rose Neuron by Using Intermittent Feedback with One Variable
MA Jun1,2, WANG Qing-Yun3, JIN Wu-Yin4, XIA Ya-Feng1
1School of Science, Lanzhou University of Technology, Lanzhou 7300502Department of Physics, Central China Normal University, Wuhan 4300793Department of Mathematics, Inner Mongolia Finance and Economics College, Huhhot 0100514College of Mechano-Electronic Engineering, Lanzhou University of Technology, Lanzhou 730050
Cite this article:   
MA Jun, WANG Qing-Yun, JIN Wu-Yin et al  2008 Chin. Phys. Lett. 25 3582-3585
Download: PDF(464KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The mechanism of the famous phase compression is discussed, and it is used to control the chaos in the Hindmarsh--Rose (H-R) model. It is numerically confirmed that the phase compression scheme can be understood as one kind of intermittent feedback scheme, which requires appropriate thresholds and feedback coefficient, and the intermittent feedback can be realized with the Heaviside function. In the case of control chaos, the output variable (usually the voltage or the membrane potential of the neuron) is sampled and compared with the external standard signal of the electric electrode. The error between the sampled variable and the external standard signal of the electrode is input into the system only when the sampled variable surpasses the selected thresholds. The numerical simulation results confirm that the chaotic H-R system can be controlled to reach arbitrary n-periodical (n=1, 2, 3, 4, 5, 6, ...) orbit or stable state even when just one variable is feed backed into the system intermittently. The chaotic Chua circuit is also investigated to check its model independence and effectiveness of the schemes and the equivalence of the two schemes are confirmed again.
Keywords: 05.45.-a      05.45.Xt      87.17.Nn     
Received: 10 June 2008      Published: 26 September 2008
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  87.17.Nn  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03582
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Jun
WANG Qing-Yun
JIN Wu-Yin
XIA Ya-Feng
[1] Ott E et al 1990 Phys. Rev. Lett. 64 1196
[2] Boccaletti S et al 2000 Phys. Rep. 329 103
[3] Ma J et al 2005 Acta. Phys. Sin. 54 4602 (inChinese)
[4] Gao J H, Zheng Z G 2007 Chin. Phys. Lett. 24359
[5]Zhan M et al 2000 Chin. Phys. Lett. 17 332
[6] Yang J Z and Zhang M 2005 Chin. Phys. Lett. 222183
[7] Sun F Y 2006 Chin. Phys. Lett. 23 32
[8] Zheng Y H et al 2006 Chin. Phys. Lett. 23 3176
[9] Shen J H et al 2006 Chin. Phys. Lett. 23 1406
[10] Luo X S 1999 Acta Phys. Sin. 48 402 (inChinese)
[11] Zhang X et al 2001 Acta. Phys. Sin. 50 624(in Chinese)
[12] Zhang X and Shen K 2001 Phys. Rev. E 63046212
[13] Corron N J et al 2000 Phys. Rev. Lett. 843835
[14] Hindmarsh J L and Rose R M 1982 Nature 276162
[15] Hindmarsh J L et al 1984 Proc. R. Soc. London B 221 87
[16] Wang H X et al 2005 Chin. Phys. Lett. 22 2173
[17] Shi X and Lu Q S 2004 Chin. Phys. Lett. 211695
[18] Jr R E et al 2006 Phys. Rev. E 74 061906
[19] Wu Y et al 2007 Chin. Phys. Lett. 24 3066
[20] Shi X and Lu Q S 2007 Chin. Phys. Lett. 24636
[21] Belykh I et al 2005 Phys. Rev. Lett. 94188101
[22] Madan R N 1993 Chua's Circuit: A Paradigm for Chaos(Singapore: World Scientific)
[23] Ma J, Jia Y and Yi M et al 2008 Chaos, Solitons{\rm\& Fractals (in press)(http://dx.doi.org/10.1016/j.chaos.2008.05.014)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 3582-3585
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 3582-3585
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 3582-3585
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3582-3585
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 3582-3585
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3582-3585
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 3582-3585
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3582-3585
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 3582-3585
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 3582-3585
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3582-3585
[12] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 3582-3585
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 3582-3585
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 3582-3585
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 3582-3585
Viewed
Full text


Abstract