Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3574-3577    DOI:
Original Articles |
Quantum Phase Transitions in Matrix Product States
ZHU Jing-Min
Center of Theoretical Physics, School of Physics and Technology, Sichuan University, Chengdu 610064
Cite this article:   
ZHU Jing-Min 2008 Chin. Phys. Lett. 25 3574-3577
Download: PDF(266KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous.
Keywords: 05.30.-d      64.60.-i     
Received: 05 May 2008      Published: 26 September 2008
PACS:  05.30.-d (Quantum statistical mechanics)  
  64.60.-i (General studies of phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03574
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Jing-Min
[1] Sachdev S 1999 Quantum Phase Transitions (Cambridge:Cambridge University Press)
[2] Fannes M et al 1992 Commun. Math. Phys. 144443
[3] Verstraete F et al 2004 Phys. Rev. Lett. 93227205
[4] Verstraete F and Cirac J I cond-mat/0505140 Osborne T J quant-ph/0508031; Hastings M B cond-mat/ 0508554
[5] Affleck I et al 1988 Commun. Math. Phys. 115477
[6] Kl\"umper A et al 1991 J. Phys. A 24 L955 Kl\"umper A et al 1992 Z. Phys. B 87 281
[7] Kl\"umper A et al 1993 Europhys. Lett. 24 293
[8] Wolf M M et al 2006 Phys. Rev. Lett. 97 110403
[9] Asoudeh M et al 2007 Phys. Rev. B 75 224427
[10] Cen L X and Wang Z D unpublished
[11] Nachtergaele B 1996 Commun. Math. Phys. 175565
[12] Nielsen N et al 2000 Quantum Computation and QuantumCommunication (Cambridge: Cambridge University Press)
[13] Verstraete F et al 2005 Phys. Rev. Lett. 94140601
[14] Vidal V et al 2003 Phys. Rev. Lett. 90 227902
Related articles from Frontiers Journals
[1] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 3574-3577
[2] GU Ting-Ting, WU Xiang, QIN Shan, LIU Jing, LI Yan-Chun, ZHANG Yu-Feng. High-Pressure and High-Temperature in situ X−Ray Diffraction Study of FeP2 up to 70 GPa[J]. Chin. Phys. Lett., 2012, 29(2): 3574-3577
[3] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 3574-3577
[4] DUAN Yi-Feng**, QIN Li-Xia, SHI Li-Wei, TANG Gang . Pressure-Induced Anomalous Phase Transitions and Colossal Enhancements of Piezoelectricity in Ground-State BaTiO3[J]. Chin. Phys. Lett., 2011, 28(4): 3574-3577
[5] DING Jian-Xu, WANG Tao, WANG Sheng-Lai**, CUI De-Liang**, MU Xiao-Ming, XU Xin-Guang . Effect of Pressure on Thermal Stability and Decomposition of KDP Crystal[J]. Chin. Phys. Lett., 2011, 28(2): 3574-3577
[6] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 3574-3577
[7] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for the Bateman System on Noncommutative Phase Space[J]. Chin. Phys. Lett., 2010, 27(9): 3574-3577
[8] ZHU Ren-Gui, WANG An-Min. Statistical Interaction Term of One-Dimensional Anyon Models[J]. Chin. Phys. Lett., 2010, 27(4): 3574-3577
[9] CUI Xiao-Yan, HU Ting-Jing, HAN Yong-Hao, GAO Chun-Xiao, PENG Gang, LIU Cai-Long, WU Bao-Jia, WANG Yue, LIU Bao, REN Wan-Bin, LI Yan, SU Ning-Ning, ZOU Guang-Tian, DU Fei, CHEN Gang. Phase Transition Behavior of LiCr 0.35 Mn0.65O2 under High Pressure by Electrical Conductivity Measurement[J]. Chin. Phys. Lett., 2010, 27(3): 3574-3577
[10] MENG Qing-Kuan, ZHU Jian-Yang. Self-Organization of Weighted Networks in Connection with the Misanthrope Process[J]. Chin. Phys. Lett., 2009, 26(8): 3574-3577
[11] HU Li-Yun, FAN Hong-Yi. Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule[J]. Chin. Phys. Lett., 2009, 26(6): 3574-3577
[12] GU Shi-Jian . Density-Functional Fidelity Approach to Quantum Phase Transitions[J]. Chin. Phys. Lett., 2009, 26(2): 3574-3577
[13] WANG Hai-Yan, CHEN Yan, LIU Yu-Wen, LI Fei, LIU Jian-Hua, PENG Gui-Rong, WANG Wen-Kui. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process[J]. Chin. Phys. Lett., 2009, 26(10): 3574-3577
[14] DU Hui-Jing, GUO Li-Cong, LI Dong-Chun, YU Dong-Li, HE Ju-Long. First-Principles Calculations of Phase Transition and Stability of Si2CN4 under High Pressure[J]. Chin. Phys. Lett., 2009, 26(1): 3574-3577
[15] REN Feng-Zhu, WANG Yuan-Xu, ZHANG Guang-Biao. Pressure-Induced Phase Transition of Ruthenium Diboride[J]. Chin. Phys. Lett., 2009, 26(1): 3574-3577
Viewed
Full text


Abstract