Original Articles |
|
|
|
|
Long-Time Dynamic Response and Stochastic Resonance of Subdiffusive Overdamped Bistable Fractional Fokker--Planck Systems |
KANG Yan-Mei, JIANG Yao-Lin |
Department of Applied Mathematics, School of Science, Xi'an Jiaotong University, Xi'an 710049 |
|
Cite this article: |
KANG Yan-Mei, JIANG Yao-Lin 2008 Chin. Phys. Lett. 25 3578-3581 |
|
|
Abstract To explore the influence of anomalous diffusion on stochastic resonance (SR) more deeply and effectively, the method of moments is extended to subdiffusive overdamped bistable fractional Fokker--Planck systems for calculating the long-time linear dynamic response. It is found that the method of moments attains high accuracy with the truncation order N=10, and in normal diffusion such obtained spectral amplification factor (SAF) of the first-order harmonic is also confirmed by stochastic simulation. Observing the SAF of the odd-order harmonics we find some interesting results, i.e. for smaller driving frequency the decrease of subdiffusion exponent inhibits the stochastic resonance (SR), while for larger driving frequency the decrease of subdiffusion exponent enhances the second SR peak, but the first one vanishes and a double SR is induced in the third-order harmonic at the same time. These observations suggest that the anomalous diffusion has important influence on the bistable dynamics.
|
Keywords:
05.40.Jc
05.60.Cd
47.53.+n
|
|
Received: 26 June 2008
Published: 26 September 2008
|
|
|
|
|
|
[1] Benzi R, Sutera A and Vupiani A 1981 J. Phys. A 14 L453 [2] Gammaitoni L, Hanggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223 [3] Long Z and Qin Y 2003 Phys. Rev. Lett. 91208103 [4] Kang Y M, Xu J X and Xie Y 2005 Phys. Rev. E 72 021902 [5] Kang Y M, Xu J X and Jin W Y 2005 Int. J. Nonlin.Sci. Numerical Simulation 6 19 [6] Xie Y, Xu J X, Kang Y M, Duan Y B and Hu S J 2004 Chaos, Soliton {\& Fractals 22 151 [7] Zhao X, Long Z, Zhang B and Yang N 2008 Chin. Phys.Lett. 25 1490 [8] Cai J C, Wang C J and Mei D C 2007 Chin. Phys. Lett. 24 1162 [9] Li J H 2008 Commun. Theor. Phys. 49 945 [10] Cao Z J, Li P F and Hu G 2007 Chin. Phys. Lett. 24 882 [11] Li J H 2007 Phys. Rev. E 76 021113 [12] Wang R and Long Z 2007 Chin. Phys. Lett. 24275 [13] Li J H 2008 Europhys. Lett. 82 50006 [14] Jung P 1993 Phys. Rep. 234 175 [15] McNamara B and Wiesenfeld K 1969 Phys. Rev. A 39 4854 [16] Dykman M I, Haken H, Hu G, Luchinsky D G, Mannella R,McClintock P V E, Ning C Z, Stein N D and Stocks N G 1993 Phys.Lett. A 180 332 [17] Hu G, Nicolis G and Nicolis C 1990 Phys. Rev. A 42 2030 [18] Fox R F and LuY 1993 Phys. Rev. E 48 3390 [19] Evistigneev M, Pankov V and Prince R H 2001 J.Phys. A: Math. Gen. 34 2595 [20] Evistigneev M, Pankov V and Prince R H 2002 Phys.Rev. Lett. 88 240201 [21] Kang Y M, Xu J X and XieY 2003 Phys. Rev. E 68 036123 [22] Metzler R and Klafter J 2000 Phys. Rep. 339 1 [23] Podlubny I 1998 Fractional Differential Equations:An Introduction to Fractional Derivatives, Fractional DifferentialEquations, to Methods of Their Solution and Some of TheirApplications (New York: Academic) [24] Bao J D 2005 Prog. Phys. 24 359 (in Chinese) [25] Scher H and Montroll E 1975 Phys. Rev. B 122455 [26] Liu G and Han RS 2001 Chin. Phys. Lett. 18269 [27] Pargellis A N and Leibler S 1996 Phys. Rev. Lett. 77 4470 [28] Klemm A, Muller H P, and Kimmich R 1997 Phys. Rev.E 55 4413 [29] Barkai E and Silbey R S 2000 J. Phys. Chem. B 104 3866 [30] Metzler R and Monnenmacher T F 2002 Chem. Phys. 284 67 [31] Metzler R, Barkai E and Klafter J 1999 Phys. Rev.Lett. 82 3563 [32] Yim M K and Liu K L 2006 Phys. A 369 329 [33] Zeng L Z, Xu B H and Li J L 2007 Phys. Lett. A 361 455 [34] Kalmykov Y P, Coffey W T and Titov S V 2007 Phys.Rev. E 75 031101 [35] Kang Y M, Xu J X and Xie Y 2005 Chin. Phys. 15 1691 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|