Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3527-3530    DOI:
Original Articles |
Similarity Reductions and Similarity Solutions of the (3+1)-Dimensional Kadomtsev--Petviashvili Equation
LIU Na, LIU Xi-Qiang
School of Mathematical Sciences, Liaocheng University, Liaocheng 252059
Cite this article:   
LIU Na, LIU Xi-Qiang 2008 Chin. Phys. Lett. 25 3527-3530
Download: PDF(169KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Employing the compatibility method, we obtain the symmetries of the (3+1)-dimensional Kadomtsev--Petviashvili (KP) equation. Four types of similarity reductions of the KP equation are obtained by solving the corresponding characteristic equations associated with symmetry equations. In addition, a lot of similarity solutions to the KP equation are obtained.
Keywords: 02.30.Jr      05.45.Yv     
Received: 25 June 2008      Published: 26 September 2008
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03527
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Na
LIU Xi-Qiang
[1] El-Wakil S A et al 2007 Chaos, Solitons &Fractals 31 840
[2] Bai C L et al 2006 Chaos, Solitons & Fractalsbf 27 1026
[3] Wazwaz A M 2007 Appl. Math. Comput. bf 184 1002
[4] He J H et al 2006 Chaos, Solitons & Fractals bf30 700
[5] Fan E G and Zhang J 2002 Phys. Lett. A bf 305383
[6] Abdou M A 2007 Chaos, Solitons & Fractals bf31 95
[7] Ren Y J et al 2006 Chaos, Solitons & Fractalsbf 27 959
[8] Yan Z L and Liu X Q 2006 Appl. Math. Comput. bf180 288
[9] Zhang S L et al 2002 Chin.Phys.Lett bf 19 1741
[10] Zhang S L et al 2003 J. Phys. A: Math. Genbf 36 12223
[11] Swnatorski A and Infeld E 1996 Phys. Rev. Lett.bf 77 2855
[12] Chen Y et al 2003 Phys. Lett. A bf 307 107
[13] EI-Sayed S M et al 2004 Appl. Math. Comput. bf157 523
[14] Hu J Q 2005 Chaos Solitons & Fractals bf 23391
[15] Chen H T et al 2004 Appl. Math. Comput. bf 157765
[16] Liu G T and Fan T Y 2005 Phys. Lett. A bf 345161
[17] Lou S Y et al 2006 Chaos Solitons & Fractalsbf 30 804
[18] Zhang H Q 2007 Commun. Nonlinear. Sci. Numer.Simulat. bf 12 627
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 3527-3530
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 3527-3530
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 3527-3530
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 3527-3530
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 3527-3530
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 3527-3530
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 3527-3530
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 3527-3530
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 3527-3530
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 3527-3530
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 3527-3530
[12] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 3527-3530
[13] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 3527-3530
[14] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 3527-3530
[15] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 3527-3530
Viewed
Full text


Abstract