Original Articles |
|
|
|
|
Decomposition for a 2+1-Dimensional Discrete Integrable Model |
SU Ting1, MA Yun-Ling2, GENG Xian-Guo1 |
1Department of Mathematics, Zhengzhou University, Zhengzhou 4500522Department of Mathematics, Shangqiu Normal University, Shangqiu 471022 |
|
Cite this article: |
SU Ting, MA Yun-Ling, GENG Xian-Guo 2008 Chin. Phys. Lett. 25 3523-3526 |
|
|
Abstract A 2+1-dimensional discrete is presented, which is decomposed into a new integrable symplectic map and a class of finite-dimensional integrable Hamiltonian systems, with aid of the nonlinearization of Lax pairs. The system is completely integrable in the Liouville sense.
|
Keywords:
02.30.Ik
04.06.Nc
|
|
Received: 22 April 2008
Published: 26 September 2008
|
|
|
|
|
|
[1] Ablowitz M J and Ladik J F 1977 Stud. Appl. Math. 57 1 [2] Tsuchida T 2002 J. Phys. A: Math. Gen. 35 7827 [3] Tsuchida T et al 1998 J. Math. Phys. 39 4785 [4]Geng X G et al 2003 J. Math. Phys. 44 4573 [5] Geng X G and Dai H H 1999 J. Math. Analysis andApplication 233 26 [6]Cao C W et al 1990 J. Phys. A: Math. Gen. 23 4117 [7]Hirota R 1972 J. Phys. Soc. Jpn. 33 1456 [8]Wadati M et al 1975 Theor. Phys. 53 419 [9]Matveev V A and Salle M A 1991 Darboux Transformationsand solitons (Berlin: Springer) [10]Wu Y T et al 1998 J. Phys. A: Math. Gen. 31 L677 [11]Cao C W and Geng X G 1990 Nonlinear Physics(Berlin:Springer) 68 [12]Cao C W et al 1999 J. Math. Phys. 40 3948 [13]Arnold V I 1978 Mathematical Methods of ClassicalMechanics (Berlin: Springer) [14]Bruschi M et al 1991 Physica D 49 273 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|