Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3523-3526    DOI:
Original Articles |
Decomposition for a 2+1-Dimensional Discrete Integrable Model
SU Ting1, MA Yun-Ling2, GENG Xian-Guo1
1Department of Mathematics, Zhengzhou University, Zhengzhou 4500522Department of Mathematics, Shangqiu Normal University, Shangqiu 471022
Cite this article:   
SU Ting, MA Yun-Ling, GENG Xian-Guo 2008 Chin. Phys. Lett. 25 3523-3526
Download: PDF(201KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A 2+1-dimensional discrete is presented, which is decomposed into a new integrable symplectic map and a class of finite-dimensional integrable Hamiltonian systems, with aid of the nonlinearization of Lax pairs. The system is completely integrable in the Liouville sense.
Keywords: 02.30.Ik      04.06.Nc     
Received: 22 April 2008      Published: 26 September 2008
PACS:  02.30.Ik (Integrable systems)  
  04.06.Nc  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03523
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Ting
MA Yun-Ling
GENG Xian-Guo
[1] Ablowitz M J and Ladik J F 1977 Stud. Appl. Math. 57 1
[2] Tsuchida T 2002 J. Phys. A: Math. Gen. 35 7827
[3] Tsuchida T et al 1998 J. Math. Phys. 39 4785
[4]Geng X G et al 2003 J. Math. Phys. 44 4573
[5] Geng X G and Dai H H 1999 J. Math. Analysis andApplication 233 26
[6]Cao C W et al 1990 J. Phys. A: Math. Gen. 23 4117
[7]Hirota R 1972 J. Phys. Soc. Jpn. 33 1456
[8]Wadati M et al 1975 Theor. Phys. 53 419
[9]Matveev V A and Salle M A 1991 Darboux Transformationsand solitons (Berlin: Springer)
[10]Wu Y T et al 1998 J. Phys. A: Math. Gen. 31 L677
[11]Cao C W and Geng X G 1990 Nonlinear Physics(Berlin:Springer) 68
[12]Cao C W et al 1999 J. Math. Phys. 40 3948
[13]Arnold V I 1978 Mathematical Methods of ClassicalMechanics (Berlin: Springer)
[14]Bruschi M et al 1991 Physica D 49 273
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 3523-3526
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 3523-3526
[3] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3523-3526
[4] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 3523-3526
[5] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 3523-3526
[6] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 3523-3526
[7] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 3523-3526
[8] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3523-3526
[9] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3523-3526
[10] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 3523-3526
[11] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 3523-3526
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 3523-3526
[13] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 3523-3526
[14] Abbagari Souleymanou, **, Victor K. Kuetche, Thomas B. Bouetou, , Timoleon C. Kofane . Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(12): 3523-3526
[15] YU Fa-Jun. Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy[J]. Chin. Phys. Lett., 2011, 28(12): 3523-3526
Viewed
Full text


Abstract