Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 35-38    DOI:
Original Articles |
Partial Transposition on Bipartite System
REN Xi-Jun;HAN Yong-Jian;WU Yu-Chun;GUO Guang-Can
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
REN Xi-Jun, HAN Yong-Jian, WU Yu-Chun et al  2008 Chin. Phys. Lett. 25 35-38
Download: PDF(111KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Many properties of partial transposition are unclear as yet. Here we carefully consider the number of the negative eigenvalues of ρT (ρ's partial transposition) when ρ is a two-partite state. There is strong evidence to show that the number of negative eigenvalues of ρT is N(N-1)/2 at most when ρ is a state in Hilbert space CN×CN. For the special case, the 2×2 system,
we use this result to give a partial proof of the conjecture |ρT|T≥0. We find that this conjecture is strongly connected with the entanglement of the state corresponding to the negative eigenvalue of ρ^T or the negative entropy of ρ.
Keywords: 03.67.Mn      03.65.Ud      03.67.-a     
Received: 23 July 2007      Published: 27 December 2007
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/035
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Xi-Jun
HAN Yong-Jian
WU Yu-Chun
GUO Guang-Can
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
[2] Bennett C H et al 1996 Phys. Rev. A 54 3824
[3] Vedral V and Plenio M B 1998 Phys. Rev. A 571619
[4] Lewenstein M et al 2001 Phys. Rev. A 63 044304
[5] D\"{ur W and Cirac J I 2000 Phys. Rev. A 62022302
[6] Peres A 1996 Phys. Rev. Lett. 77 1413
[7] Horodecki M et al 1996 Phys. Lett. A 223 1
[8] Audenaert K et al 2002 Phys. Rev. A 66 032310
[9] Ishizaka S 2004 Phys. Rev. A 69 020301
[10] Horn R A and Johnson C R 1985 Matrix Analysis(Cambridge: Cambridge University)
[11] Verstraete F et al 2001 J. Phys. A 34 10327
[12] Landau D P and Binder K 2005 A Guide to Monte CarloSimulations in Statistical Physics (Cambridge: Cambridge UniversityPress)
[13] Vidal G and Werner R F 2002 Phys. Rev. A 65032314
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 35-38
[2] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 35-38
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 35-38
[4] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 35-38
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 35-38
[6] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 35-38
[7] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 35-38
[8] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 35-38
[9] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 35-38
[10] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 35-38
[11] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 35-38
[12] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 35-38
[13] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 35-38
[14] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 35-38
[15] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 35-38
Viewed
Full text


Abstract