Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 31-34    DOI:
Original Articles |
Negativity in the Extended Hubbard Model under External Magnetic Field
YANG Zhen;NING Wen-Qiang
Department of Physics, Fudan University, Shanghai 200433Department of Physics, Chinese University of Hong Kong, Hong Kong
Cite this article:   
YANG Zhen, NING Wen-Qiang 2008 Chin. Phys. Lett. 25 31-34
Download: PDF(1406KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We exactly calculate the negativity, a measurement of entanglement, in the two-site extended Hubbard model with external magnetic field. Its behaviour at different temperatures is presented. The negativity reduces with the increasing temperature or with the increasing uniform external magnetic field. It is also found that a non-uniform external magnetic field can be used to
modulate or to increase the negativity.
Keywords: 03.67.Mn      03.65.Ud      71.10.Fd     
Received: 27 July 2007      Published: 27 December 2007
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/031
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Zhen
NING Wen-Qiang
[1] Einstein A, Podolsky B and Rozen N 1935 Phys. Rev. 47 777
[2] Schrodinger E 1935 Naturwiss. 23 807
[3] Bell J S 1964 Physics 1 195
[4] Bennett C H and Divincenzo D P 2000 Nature 407247
[5] Nielson M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
[6] Sachdev S 1999 Quantum Phase Transitions (Cambridge:Cambridge University Press)
[7] Nielsen M A, Ph. D. thesis, University of New Mexico, 1998 e-print arXiv: quant-ph/0011036
[8] Gunlycke D, Kendon V M and Vedral V 2001 Phys. Rev.A 64 042302
[9] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev.Lett. 87 017901
[10] Osterloh A, Amico Luigi, Falci G and Rosario F 2002 Nature 416 608
[11] Anteneodo C and Souza A M C 2003 J. Opt. B : QuantumSemiclass. Opt. 5 73
[12] Wang X G 2001 Phys. Rev. A 64 012313 Wang X G 2001 Phys. Lett. A 281 101
[13] Gu S J, Lin H Q and Li Y Q 2003 Phys. Rev. A 68 042330 Gu S J, Tian G S and Lin H Q 2005 Phys. Rev. A 71052322
[14] Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev.Lett. 93 086402
[15] Anfossi A, Giorda P, Montorsi A and F. Traversa 2005 Phys. Rev. Lett. 95 056402
[16] Buonsante P and Vezzani A 2007 Phys. Rev. Lett. 98 110601
[17] Sun Y, Chen Y G and Chen H 2003 Phys. Rev. A 68 044301
[18] Deng S S and Gu S J 2005 Chin. Phys. Lett. 22804
[19] Zhang G F and Li S S 2006 Eur. Phys. J. D 37123
[20] Zhang F L , Liang M L, Zhang J H 2007 OpticsCommunications 275 268
[21] Lin H Q, Campbell D C and Clay R T 2000 Chin. J.Phys. 38 1
[22] Hill S, Edwards R S, Aliaga-Alcalde N and Christou G 2003 Science 302 1015
[23] Peres A 1996 Phys. Rev. Lett. 77 1413 Horodecki M, Horodecki P and Horodecki R 1996 Phys.Lett. A 233 1
[24] Hill S and Wotters W K 1997 Phys. Rev. Lett. 78 5022 Wootters W K 1998 Phys. Rev. Lett. 80 2245
[25] Vidal G and Werner R F 2002 Phys. Rev. A 65032314
[26] Groisman B, Popescu S and Winter A Preprint arXiv:quant-ph/0410091
Related articles from Frontiers Journals
[1] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 31-34
[2] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 31-34
[3] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 31-34
[4] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 31-34
[5] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 31-34
[6] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 31-34
[7] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 31-34
[8] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 31-34
[9] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 31-34
[10] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 31-34
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 31-34
[12] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 31-34
[13] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 31-34
[14] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 31-34
[15] YAN Jun-Yan**, WANG Lin-Cheng, YI Xue-Xi . Sudden Transition between Quantum Correlation and Classical Correlation: the Effect of Interaction between Subsystems[J]. Chin. Phys. Lett., 2011, 28(6): 31-34
Viewed
Full text


Abstract