Chin. Phys. Lett.  2007, Vol. 24 Issue (9): 2509-2512    DOI:
Original Articles |
Accelerated Stochastic Simulation of Large Chemical Systems
CHEN Xiao;AO Ling
Academy of Physics and Electric Engineering, Central University for Nationalities, Beijing 100081
Cite this article:   
CHEN Xiao, AO Ling 2007 Chin. Phys. Lett. 24 2509-2512
Download: PDF(340KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For efficient simulation of chemical systems with large number of reactions, we report a fast and exact algorithm for direct simulation of chemical discrete Markov processes. The approach adopts the scheme of organizing the reactions into hierarchical groups. By generating a random number, the selection of the next reaction that actually occurs is accomplished by a few successive selections in the hierarchical groups. The algorithm which is suited for simulating systems with large number of reactions is much faster than the direct method or the optimized direct method. For a demonstration of its efficiency, the accelerated algorithm is applied to simulate the reaction-diffusion Brusselator model on a discretized space.
Keywords: 05.45.-a      5.40.-a      02.50.-r     
Received: 03 March 2007      Published: 16 August 2007
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  5.40.-a  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I9/02509
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Xiao
AO Ling
[1] McQuarrie D A 1967 J. Appl. Probab. 4 413
[2] Gillespie D T 1977 J. Phys. Chem. 81 2340
[3] Gillespie D T 1976 J. Comput. Phys. 22 403
[4] Vlachos D G 2005 Adv. Chem. Eng. 30 1
[5] Gibson M et al 2000 J. Phys. Chem. A 104 1876
[6] Cao Y, Li H and Petzold L R 2004 J. Chem. Phys. 121 4059
[7] Gillespie D T 2001 J. Chem. Phys. 115 1716
[8] Gillespie D T, Petzold L R 2003 J. Chem. Phys. 119 8229
[9] Tian T and Burrage K 2004 J. Chem. Phys. 121 10356
[10] Rathinam M et al 2003 J. Chem. Phys. 119 12784
[11] Cao Y, Gillespie D T, and Petzoldc L R 2005 J.Chem. Phys. 122 014116
[12] Chatterjee A and Vlachosa D G 2006 J. Chem. Phys. 124 064110
[13] Wang H, and Xin H 1998 Physica A 251 389 Wang H, Fu Z, Xu X, Ouyang Q 2007 J. Phys. Chem. A 111 1265
[14] Nicolis G and Prigogine I 1977 Self-Organization inNon-Equilibrium Systems (New York: Wiley-Interscience)
[15] Lukkien J J et al 1998 Phys. Rev. E 58 2598
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 2509-2512
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 2509-2512
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 2509-2512
[4] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 2509-2512
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 2509-2512
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 2509-2512
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 2509-2512
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2509-2512
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 2509-2512
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 2509-2512
[11] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 2509-2512
[12] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 2509-2512
[13] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 2509-2512
[14] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 2509-2512
[15] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 2509-2512
Viewed
Full text


Abstract