Chin. Phys. Lett.  2007, Vol. 24 Issue (9): 2513-2516    DOI:
Original Articles |
Nonlinear Dynamics of a Sliding Chain in a Periodic Potential
YUAN Xiao-Ping;ZHENG Zhi-Gang
Department of Physics and the Beijing-Hong-Kong-Singapore Joint Center for Nonlinear and Complex Systems (Beijing), Beijing Normal University, Beijing 100875
Cite this article:   
YUAN Xiao-Ping, ZHENG Zhi-Gang 2007 Chin. Phys. Lett. 24 2513-2516
Download: PDF(295KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonlinear dynamics of the sliding process of a chain driven with a constant velocity at one end in a periodic substrate potential is investigated. The driven chain exhibits distinctly different dynamical characteristics at different velocities. In the low velocity region, the chain moves in a stick--slip manner. When the driving velocity is increased, the stick--slip behaviour is replaced by
complicated and regular oscillatory motions. The dependence of the dynamics on the coupling strength is studied and the step-like behaviour is found, where different steps correspond to different dynamical phases.
Keywords: 05.45.Xt     
Received: 26 January 2007      Published: 16 August 2007
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I9/02513
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Xiao-Ping
ZHENG Zhi-Gang
[1]Persson B N J 1998 Sliding Friction: Physical Principles andApplications (Berlin: Springer)
[2]Weiss M and Elmer F J 1996 Phys. Rev. B 53 7539
[3]Braun O M and Kivshar Y S 2004 The Frenkel-Kontorova Model:Concepts, Methods, and Applications (Berlin: Springer)
[4]Blonski S, Brostow W and Kub\'at 1994 Phys. Rev. B 49 6494
[5]Brostow W and Kub\'at 1993 Phys. Rev. B 47 7659
[6]Aubry S 1983 J. Phys. (France) 44 147
[7]R\"oder J, Hammerberg J E, Holian B L and BishopA R 1998 Phys. Rev. B 57 2759
[8]Braun O M, Dauxois T, Paliy M V and Peyrard M 1996 Phys. Rev. B 54 321
[9]Braun O M, Dauxois T, Paliy M V and Peyrard M 1997 Phys. Rev. E 55 3598
[10]Gao L, Gu J Zh and Hu B B 2002 Phys. Rev. B 66 064309
[11]Braun O M, Bishop A R and R\"oder J 1997 Phys.Rev. Lett. 79 3692
[12]Strunz T and Elmer F J 1998 Phys. Rev. E 581601
[13]Strunz T and Elmer F J 1998 Phys. Rev. E 581612
[14]Persson B N J and Volokitin A I 1995 J. Chem. Phys. 103 8679
[15]Elmer F J 1994 Phys. Rev. E 50 4470
[16]Rozman M G, Urbakh M and Klafter J 1996 Phys.Rev. Lett. 77 683
[17]Yuan X P, Chen H B and Zheng Z G 2006 Chin. Phys. 15 1464
[18]Vanossi A, R\"oder J, Bishop A R and Bortolani V 2000 Phys. Rev. E 63 017203 Vanossi A, R\"oder J, Bishop A R and Bortolani V 2003 Phys.Rev. E 67 016605
[19]Krupenkin T N and Taylor P L 1995 Phys. Rev. B 52 6400
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 2513-2516
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2513-2516
[3] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 2513-2516
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 2513-2516
[5] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2513-2516
[6] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 2513-2516
[7] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 2513-2516
[8] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 2513-2516
[9] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 2513-2516
[10] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 2513-2516
[11] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 2513-2516
[12] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 2513-2516
[13] LI Mei-Sheng**, ZHANG Hong-Hui, ZHAO Yong, SHI Xia . Synchronization of Coupled Neurons Controlled by a Pacemaker[J]. Chin. Phys. Lett., 2011, 28(1): 2513-2516
[14] SUN Zhi-Qiang, XIE Ping, LI Wei, WANG Peng-Ye. Spiking Regularity and Coherence in Complex Hodgkin-Huxley Neuron Networks[J]. Chin. Phys. Lett., 2010, 27(8): 2513-2516
[15] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 2513-2516
Viewed
Full text


Abstract