Original Articles |
|
|
|
|
An Efficient Scheme for Implementing an N-Qubit Toffoli Gate with Superconducting Quantum-Interference Devices in Cavity QED |
ZHENG An-Shou1;LIU Ji-Bing2;XIANG Dong1;LIU Cui-Lan1;YUAN Hong1 |
1College of Mathematics and Physics, China University of Geosciences, Wuhan 4300742Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 |
|
Cite this article: |
ZHENG An-Shou, LIU Ji-Bing, XIANG Dong et al 2007 Chin. Phys. Lett. 24 2489-2492 |
|
|
Abstract An alternative approach is proposed to realize an n-qubit Toffoli gate with superconducting quantum-interference devices (SQUIDs) in cavity quantum electrodynamics (QED). In the proposal, we represent two logical gates of a qubit with the two lowest levels of a SQUID while a higher-energy intermediate level of each SQUID is utilized for the gate manipulation. During the operating process, because the cavity field is always in vacuum state, the requirement on the cavity is greatly loosened and there is no transfer of quantum information between the cavity and SQUIDs.
|
Keywords:
03.67.Lx
81.25.Dq
42.50.Dv
|
|
Received: 31 May 2007
Published: 16 August 2007
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
81.25.Dq
|
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
|
|
[1] Short P W 1994 Proceedings of the 35th Annual Symposium onFoundations of Computer Science (Santa Fe, NM: IEEE Computer Society) [2] Grover L K 1997 Phys. Rev. Lett. 79 325 [3] Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889 [4] Chiorescu I, Nakamura Y, Harmans C J P M and Mooij J E 2003 Science 299 1869 [5] van der Wal C H et al%, ter Haar A C J, Wilhelm F K, Schouten R N, Harmans C J P M, Orlando T%P, Seth Lloyd and Mooij J E2000 Science 290 773 [6] Wallraff A et al %, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J,%Kumar S, Girvin S M and Schoelkopf R J2004 Nature 431 162 [7] Chiorescu I et al%, Bertet P, Semba K, Nakamura Y, M.Harmans C J P and Mooij J E2004 Nature 431 159 [8] Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087 [9] Barenco A et al%, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T,%Smolin J A and Weinfurter H1995 Phys. Rev. A 52 3457 [10] M\"ott\"onen M et al %, Vartiainen J J, Bergholm V and Salomaa M M2004 Phys. Rev. Lett. 93 130502 [11] Yang C P and Han S 2005 Phys. Rev. A 72 032311 [12] Yang C P and Han S 2006 Phys. Rev. A 73 032317 [13] Zou X B, Li K and Guo G C 2006 Phys. Rev. A 74 044305 [14] Chen C Y, Feng M and Gao K L 2006 Phys. Rev. A 73 064304 [15] Shao X Q, Zhu A D, Zhang S, Chung J S and Yeon K H 2007 Phys. Rev. A 75 034307 [16] Spiller T P, Clark T D, Prance R J and Widom A 1992 Prog. LowTemp. Phys 13 219 [17] Han S, Rouse R and Lukens J E 1996 Phys. Rev. Lett. 76 3404 [18] Wu Y 1996 Phys. Rev. A 54 1586 Yang X X, Wu Y and Li Y J 1997 Phys. Rev. A 55 4545 [19] Agarwal G S, Puri R R and Singh R P 1997 Phys. Rev. A 562249 [20] S\o rensen A and M\o lmer K 1999 Phys. Rev. Lett. 82 1971 Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392 [21] Nielsen M A and Chuang I L 2001 Quantum Computation andQuantum Information (Cambridge: Cambridge University Press) p 182 [22] Yu Y et al %, Nakada D, Lee J C, Singh B, Crankshaw D S, Orlando T P,%Oliver W D and Berggren K K2004 Phys. Rev. Lett. 92 117904 [23] Day P K, Leduc H G, Mazin B, Vayonakis A and Zmuidzina J 2003 Nature 425 817 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|