Original Articles |
|
|
|
|
Evolution of Matter Wave Interference of Bose-Condensed Gas in a 1D Optical Lattice |
XU Zhi-Jun1,2;ZHANG Dong-Mei1 |
1College of Science, Zhejiang University of Technology, Hangzhou 3100322The State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 |
|
Cite this article: |
XU Zhi-Jun, ZHANG Dong-Mei 2007 Chin. Phys. Lett. 24 2493-2496 |
|
|
Abstract For a Bose-condensed gas in a combined potential consisting of an axially-symmetric harmonic magnetic trap and one-dimensional (1D) optical lattice, using the mean-field Gross--Pitaevskii (G-P) equation and the propagator method, we obtain the analytical result of the order parameter for matter wave interference at any time. The evolution of the interference pattern under a variation of the relative phase △ψ between successive subcondensates trapped on an optical lattices is also studied. For △ψ=π, the interference pattern is symmetric with two sharp peaks, which are symmetrically located on a straight line on both sides of a vacant central peak and moving apart from each other. This work is in agreement with available experimental results.
|
Keywords:
03.75.Fi
05.30.Jp
|
|
Received: 28 November 2006
Published: 16 August 2007
|
|
|
|
|
|
[1] Anderson B P and Kasevich M A 1998 Science 282 1686 [2] Cataliotti F S, Burger S, Fort C, Maddaloni P, Minardi F,Trombettoni A, Smerzi A and Inguscio M 2001 Science 293 843 [3] Cataliotti F S, Fallani L, Ferlaino F, Fort C, Maddaloni P andInguscio M 2003 New J. Phys 5 71.1 [4] Morsch O, M\"{ouller J H, Cristiani M, Ciampini D andArimondoet E 2001 Phys. Rev. Lett. 87 140402 [5] Greiner M, Mandel O, Esslinger T, H\"oansch T W and Bloch I2002 Nature 415 39 [6] Wu Y and Yang X 2006 Opt. Lett. 31 519 [7] Liu S J, Xu Z J and Xiong H W 2005 Chin. Phys. Lett. 22 533 [8] Gross E P 1963 J. Math. Phys. 4 195 [9] Adhikari S K 2004 Nucl. Phys. A 737 289 [10] Adhikari S K and Muruganandam P 2003 Phys. Lett. A 310 229 [11] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294 [12] Xiong H W, Liu S J, Huang G X and Xu Z J 2002 J. Phys.B: At. Mol. Opt. Phys. 35 4863 [13] Liu S J, Xiong H W, Xu Z J and Huang G X 2003 J. Phys.B: At. Mol. Opt. Phys. 36 2083 [14] Xu Z J, Cheng C and Xiong H W 2003 Chin. Phys. Lett. 20 611 [15] Orzel C, Tuchman A K, Fenselau M L, Yasuda M and Kasevichet MA 2001 Science 291 2386 [16] Pedri P, Pitaevskii L, Stringari S et al 2001 Phys. Rev.Lett. 87 220401 [17] Feynman P R and Hibbs A R 1965 Quantum Mechanics andPath Integrals (New York: McGraw-Hill) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|