Chin. Phys. Lett.  2007, Vol. 24 Issue (9): 2493-2496    DOI:
Original Articles |
Evolution of Matter Wave Interference of Bose-Condensed Gas in a 1D Optical Lattice
XU Zhi-Jun1,2;ZHANG Dong-Mei1
1College of Science, Zhejiang University of Technology, Hangzhou 3100322The State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
Cite this article:   
XU Zhi-Jun, ZHANG Dong-Mei 2007 Chin. Phys. Lett. 24 2493-2496
Download: PDF(391KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For a Bose-condensed gas in a combined potential consisting of an axially-symmetric harmonic magnetic trap and one-dimensional (1D) optical lattice, using the mean-field Gross--Pitaevskii (G-P) equation and the propagator method, we obtain the analytical result of the order parameter for matter wave interference at any time. The evolution of the interference pattern under a variation of the relative phase △ψ between successive subcondensates trapped on an optical lattices is also studied. For △ψ=π, the interference pattern is symmetric with two sharp peaks, which are symmetrically located on a straight line on both sides of a vacant central peak and moving apart from each other. This work is in agreement with available experimental results.
Keywords: 03.75.Fi      05.30.Jp     
Received: 28 November 2006      Published: 16 August 2007
PACS:  03.75.Fi  
  05.30.Jp (Boson systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I9/02493
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Zhi-Jun
ZHANG Dong-Mei
[1] Anderson B P and Kasevich M A 1998 Science 282 1686
[2] Cataliotti F S, Burger S, Fort C, Maddaloni P, Minardi F,Trombettoni A, Smerzi A and Inguscio M 2001 Science 293 843
[3] Cataliotti F S, Fallani L, Ferlaino F, Fort C, Maddaloni P andInguscio M 2003 New J. Phys 5 71.1
[4] Morsch O, M\"{ouller J H, Cristiani M, Ciampini D andArimondoet E 2001 Phys. Rev. Lett. 87 140402
[5] Greiner M, Mandel O, Esslinger T, H\"oansch T W and Bloch I2002 Nature 415 39
[6] Wu Y and Yang X 2006 Opt. Lett. 31 519
[7] Liu S J, Xu Z J and Xiong H W 2005 Chin. Phys. Lett. 22 533
[8] Gross E P 1963 J. Math. Phys. 4 195
[9] Adhikari S K 2004 Nucl. Phys. A 737 289
[10] Adhikari S K and Muruganandam P 2003 Phys. Lett. A 310 229
[11] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294
[12] Xiong H W, Liu S J, Huang G X and Xu Z J 2002 J. Phys.B: At. Mol. Opt. Phys. 35 4863
[13] Liu S J, Xiong H W, Xu Z J and Huang G X 2003 J. Phys.B: At. Mol. Opt. Phys. 36 2083
[14] Xu Z J, Cheng C and Xiong H W 2003 Chin. Phys. Lett. 20 611
[15] Orzel C, Tuchman A K, Fenselau M L, Yasuda M and Kasevichet MA 2001 Science 291 2386
[16] Pedri P, Pitaevskii L, Stringari S et al 2001 Phys. Rev.Lett. 87 220401
[17] Feynman P R and Hibbs A R 1965 Quantum Mechanics andPath Integrals (New York: McGraw-Hill)
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 2493-2496
[2] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 2493-2496
[3] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 2493-2496
[4] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 2493-2496
[5] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 2493-2496
[6] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 2493-2496
[7] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 2493-2496
[8] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 2493-2496
[9] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 2493-2496
[10] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 2493-2496
[11] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 2493-2496
[12] MA Zhong-Qi, C. N. Yang,. Spinless Bosons in a 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction II: Numerical Solutions[J]. Chin. Phys. Lett., 2010, 27(2): 2493-2496
[13] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 2493-2496
[14] QIAN Jun, QIAN Yong, KE Min, YAN Bo, CHENG Feng, ZHOU Shu-Yu, WANG Yu-Zhu. Single-Qubit Operations for Singlet-Triplet Qubits in an Isolated Double-Well with Fixed Tunneling[J]. Chin. Phys. Lett., 2010, 27(10): 2493-2496
[15] HUANG Bei-Bing, WAN Shao-Long. Polaron in Bose-Einstein-Condensation System[J]. Chin. Phys. Lett., 2009, 26(8): 2493-2496
Viewed
Full text


Abstract