Original Articles |
|
|
|
|
A New Type of Non-Noether Adiabatic Invariants for Disturbed Lagrangian Systems: Adiabatic Invariants of Generalized Lutzky Type |
LUO Shao-Kai |
Institute of Mathematical Mechanics and Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018 |
|
Cite this article: |
LUO Shao-Kai 2007 Chin. Phys. Lett. 24 2463-2466 |
|
|
Abstract For a Lagrangian system with the action of small disturbance, the Lie symmetrical perturbation and a new type of non-Noether adiabatic invariant are presented in general infinitesimal transformation groups. On the basis of the invariance of disturbed Lagrangian systems under general infinitesimal transformations, the determining equations of Lie symmetries of the system are constructed. Based on the definition of higher-order adiabatic invariants of a mechanical system, a new type of adiabatic invariant, i.e. generalized Lutzky adiabatic invariants, of a disturbed Lagrangian system are obtained by investigating the perturbation of Lie symmetries for a Lagrangian system with the action of small disturbance. Finally, an example is given to illustrate the application of the method and results.
|
Keywords:
02.20.Sv
|
|
Received: 06 June 2007
Published: 16 August 2007
|
|
PACS: |
02.20.Sv
|
(Lie algebras of Lie groups)
|
|
|
|
|
[1] Burgers J M 1917 Ann. Phys. (Leipzig) 52 195 [2] Kruskal M 1962 J. Math. Phys. 3 806 [3] Djukic D J S 1981 Int. J. Non-Linear Mech. 16 489 [4] Notte J, Falans J, Chu R and Wurtele J S 1993 Phys. Rev.Lett. 70 3900 [5] Ostrovsky V N and Prudov N V 1995 J. Phys. B 20 4435 [6] Wang L and Kevorkian J 1996 Phys. Plasmas 3 1162 [7] Zhao Y Y and Mei F X 1996 Acta Mech. Sin. 28 207 (inChinese) [8] Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics(Beijing: Beijing Institute of Technology Press) p728 (in Chinese) [9] Chen X W, Zhang R C and Mei F X 2000 Acta Mech. Sin. 16282 [10] Chen X W and Mei F X 2000 Chin. Phys. 9 721 [11] Chen X W and Mei F X 2001 J. Beijing Inst. Technol. 10131 [12] Chen X W, Shang M and Mei F X 2001 Chin. Phys. 10 997 [13] Chen X W and Li Y M 2005 Chin. Phys. 14 663 [14] Zhang Y 2002 Acta Phys. Sin. 51 1666 (in Chinese) [15] Zhang Y and Mei F X 2003 Acta Phys. Sin. 52 2368 (inChinese) [16] Qiao Y F, Li R J and Sun D N 2005 Chin. Phys. 14 1919 [17] Fu J L, Chen L Q and Xie F P 2003 Acta Phys. Sin. 522664 (in Chinese) [18] Chen X W, Li Y M and Zhao Y H 2005 Phys. Lett. A 337 274 [19] Zhang Y, Fan C X and Mei F X 2006 Acta Phys. Sin. 553237 (in Chinese) [20] Zhang Y 2006 Acta Phys. Sin. 55 3833 (in Chinese) [21] Zhang Y 2006 Chin. Phys. 15 1935 [22] Luo S K and Guo Y X 2007 Commun. Theor. Phys. 47 133 [23] Zhang Y 2007 Acta Phys. Sin. 56 1855 (in Chinese) [24] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973 [25] Lutzky M 1979 Phys. Lett. 72 A 86 [26] Lutzky M 1979 Phys. Lett. 75 A 8 [27] Lutzky M 1995 J. Phys. A: Math. Gen. 28 L637 [28] Lutzky M 1998 J. Phys. A: Math. Gen. 31 L721 [29] Lutzky M 1999 Int. J. Non-Linear Mech. 33 393 [30] Lutzky M 1999 Int. J. Non-Linear Mech. 34 387 [31] Zhang Y and Mei F X 2006 J. Univ. Sci. Tech. Suzhou 23 1 [32] Mei F X and Xu X J 2005 Chin. Phys. 14 449 [33] Ge W K and Zhang Y 2006 Acta Phys. Sin. 55 3833 (inChinese) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|