Chin. Phys. Lett.  2007, Vol. 24 Issue (9): 2463-2466    DOI:
Original Articles |
A New Type of Non-Noether Adiabatic Invariants for Disturbed Lagrangian Systems: Adiabatic Invariants of Generalized Lutzky Type
LUO Shao-Kai
Institute of Mathematical Mechanics and Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018
Cite this article:   
LUO Shao-Kai 2007 Chin. Phys. Lett. 24 2463-2466
Download: PDF(200KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For a Lagrangian system with the action of small disturbance, the Lie symmetrical perturbation and a new type of non-Noether adiabatic invariant are presented in general infinitesimal transformation groups. On the basis of the invariance of disturbed Lagrangian systems under general infinitesimal transformations, the determining equations of Lie symmetries of the system are constructed. Based on the definition of higher-order adiabatic invariants of a mechanical system, a new type of adiabatic invariant, i.e. generalized Lutzky adiabatic invariants, of a disturbed Lagrangian system are obtained by
investigating the perturbation of Lie symmetries for a Lagrangian system with the action of small disturbance. Finally, an example is given to illustrate the application of the method and results.
Keywords: 02.20.Sv     
Received: 06 June 2007      Published: 16 August 2007
PACS:  02.20.Sv (Lie algebras of Lie groups)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I9/02463
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Shao-Kai
[1] Burgers J M 1917 Ann. Phys. (Leipzig) 52 195
[2] Kruskal M 1962 J. Math. Phys. 3 806
[3] Djukic D J S 1981 Int. J. Non-Linear Mech. 16 489
[4] Notte J, Falans J, Chu R and Wurtele J S 1993 Phys. Rev.Lett. 70 3900
[5] Ostrovsky V N and Prudov N V 1995 J. Phys. B 20 4435
[6] Wang L and Kevorkian J 1996 Phys. Plasmas 3 1162
[7] Zhao Y Y and Mei F X 1996 Acta Mech. Sin. 28 207 (inChinese)
[8] Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics(Beijing: Beijing Institute of Technology Press) p728 (in Chinese)
[9] Chen X W, Zhang R C and Mei F X 2000 Acta Mech. Sin. 16282
[10] Chen X W and Mei F X 2000 Chin. Phys. 9 721
[11] Chen X W and Mei F X 2001 J. Beijing Inst. Technol. 10131
[12] Chen X W, Shang M and Mei F X 2001 Chin. Phys. 10 997
[13] Chen X W and Li Y M 2005 Chin. Phys. 14 663
[14] Zhang Y 2002 Acta Phys. Sin. 51 1666 (in Chinese)
[15] Zhang Y and Mei F X 2003 Acta Phys. Sin. 52 2368 (inChinese)
[16] Qiao Y F, Li R J and Sun D N 2005 Chin. Phys. 14 1919
[17] Fu J L, Chen L Q and Xie F P 2003 Acta Phys. Sin. 522664 (in Chinese)
[18] Chen X W, Li Y M and Zhao Y H 2005 Phys. Lett. A 337 274
[19] Zhang Y, Fan C X and Mei F X 2006 Acta Phys. Sin. 553237 (in Chinese)
[20] Zhang Y 2006 Acta Phys. Sin. 55 3833 (in Chinese)
[21] Zhang Y 2006 Chin. Phys. 15 1935
[22] Luo S K and Guo Y X 2007 Commun. Theor. Phys. 47 133
[23] Zhang Y 2007 Acta Phys. Sin. 56 1855 (in Chinese)
[24] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[25] Lutzky M 1979 Phys. Lett. 72 A 86
[26] Lutzky M 1979 Phys. Lett. 75 A 8
[27] Lutzky M 1995 J. Phys. A: Math. Gen. 28 L637
[28] Lutzky M 1998 J. Phys. A: Math. Gen. 31 L721
[29] Lutzky M 1999 Int. J. Non-Linear Mech. 33 393
[30] Lutzky M 1999 Int. J. Non-Linear Mech. 34 387
[31] Zhang Y and Mei F X 2006 J. Univ. Sci. Tech. Suzhou 23 1
[32] Mei F X and Xu X J 2005 Chin. Phys. 14 449
[33] Ge W K and Zhang Y 2006 Acta Phys. Sin. 55 3833 (inChinese)
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 2463-2466
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 2463-2466
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 2463-2466
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 2463-2466
[5] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 2463-2466
[6] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 2463-2466
[7] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 2463-2466
[8] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 2463-2466
[9] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 2463-2466
[10] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 2463-2466
[11] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 2463-2466
[12] TAO Si-Xing, XIA Tie-Cheng. Lie Algebra and Lie Super Algebra for Integrable Couplings of C-KdV Hierarchy[J]. Chin. Phys. Lett., 2010, 27(4): 2463-2466
[13] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 2463-2466
[14] LIU Ping, LOU Sen-Yue,. Lie Point Symmetries and Exact Solutions of the Coupled Volterra System[J]. Chin. Phys. Lett., 2010, 27(2): 2463-2466
[15] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 2463-2466
Viewed
Full text


Abstract