Chin. Phys. Lett.  2007, Vol. 24 Issue (9): 2467-2470    DOI:
Original Articles |
Linearization of Systems of Nonlinear Diffusion Equations
KANG Jing 1,2;QU Chang-Zheng 1,2
1Center for Nonlinear Studies, Northwest University, Xi'an 7100692Department of Mathematics, Northwest University, Xi'an 710069
Cite this article:   
KANG Jing, QU Chang-Zheng 2007 Chin. Phys. Lett. 24 2467-2470
Download: PDF(210KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the linearization of systems of n-component nonlinear diffusion equations; such systems have physical applications in soil science, mathematical biology and invariant curve flows. Equivalence transformations of their auxiliary systems are used to identify the systems that can be linearized. We also provide several examples of systems with two-component
equations, and show how to linearize them by nonlocal mappings.
Keywords: 02.20.Tw      02.30.Jr      44.05.+e      44.10.+i     
Received: 06 April 2007      Published: 16 August 2007
PACS:  02.20.Tw (Infinite-dimensional Lie groups)  
  02.30.Jr (Partial differential equations)  
  44.05.+e (Analytical and numerical techniques)  
  44.10.+i (Heat conduction)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I9/02467
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KANG Jing
QU Chang-Zheng
[1] Wiltshire R J 1994 J. Phys. A: Math. Gen. 27 7821
[2]Baikov V A, Gladkov A V and Wiltshire R J 1998 J. Phys.A: Math. Gen. 31 7483
[3]Chapman S J and Richardson G 1995 SIAM J. Appl. Math. 55 1275
[4]Sophocleous C and Wiltshire R J 2006 Symmetry,Integrability and Geometry: Methods and Applications vol 2 paper 004
[5]Ovsiannikov L V 1982 Group Analysis of DifferentialEquations (New York: Academic)
[6]Ibragimov N H, Torrisi M and Valenti A 1991 J. Math.phys. 32 2988
[7]Bluman G W and Kumei S 1989 Symmetries andDifferential Equations (New York: Springer)
[8]Qu C Z 2007 J. Phys. A: Math. Theor. 40 1757
[9]Sophocleous C and Wiltshire R J 2006 Phys. A 370 329
[10]Kang J and Qu C Z 2007 Commun. Theor. Phys. (accepted)
[11]Akhatov I S, Gazizov R K and Ibragimov N H 1987 Sov. Math.Dokl. 35 384
[12]Sophocleous C 1996 J. Phys. A. Math. Gen. 29 6951
[13]Chou K S and Qu C Z 1999 J. Phys. A: Math. Gen. 32 6271
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 2467-2470
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 2467-2470
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 2467-2470
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 2467-2470
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 2467-2470
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 2467-2470
[7] LIU Jing,FENG Shi-Wei**,ZHANG Guang-Chen,ZHU Hui,GUO Chun-Sheng,QIAO Yan-Bin,LI Jing-Wan. A Novel Method for Measuring the Temperature in the Active Region of Semiconductor Modules[J]. Chin. Phys. Lett., 2012, 29(4): 2467-2470
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 2467-2470
[9] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 2467-2470
[10] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 2467-2470
[11] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 2467-2470
[12] T. Hayat, **, S. Hina, Awatif A. Hendi . Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(8): 2467-2470
[13] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 2467-2470
[14] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 2467-2470
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2467-2470
Viewed
Full text


Abstract