Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1853-1856    DOI:
Original Articles |
Synchronization of Complex Network with Drivingly Coupled Scheme
CHEN Liang;LU Jun-An
School of Mathematics and Statistics, Wuhan University, Wuhan 430072
Cite this article:   
CHEN Liang, LU Jun-An 2007 Chin. Phys. Lett. 24 1853-1856
Download: PDF(237KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a network model with a new coupled scheme which is the generalization of drive-response systems called a drivingly coupled network. The synchronization of the network is investigated by numerical simulations based on Lorenz systems. By calculating the largest transversal Lyapunov
exponents of such network, the stable and unstable regions of synchronous state for eigenvalues in such network can be obtained and many kinds of drivingly coupled arrays based on Lorenz systems such as all-to-all, star-shape, ring-shape and chain-shape networks are considered.
Keywords: 05.45.Xt      05.45.-a     
Received: 01 November 2006      Published: 25 June 2007
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01853
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Liang
LU Jun-An
[1] Watts D J and Strogatz S H 1998 Nature 391 440
[2] Barabasi A L and Albet R 1999 Science 286 509
[3] Wang X F and Chen G 2002 Int. J. Bifur. Chaos 12 187
[4] Wang X F and Chen G 2002 IEEE Trans. Circuits Syst. I 49 54
[5] L\"{u J H and Chen G 2005 IEEE Trans. Auto. Control. 50 841
[6] Zhou J, Lu J A and L\"{u J H 2006 IEEE Trans.Auto. Control 51 652
[7] Pecora L M and Carroll T C 1990 Phys. Rev. Lett. 64 821
[8] Pecora L M and Carroll T C 1991 Phys. Rev. A 442374
[9] Pecora L M and Carroll T C 1998 Phys. Rev. Lett. 80 2109
[10] Yang J and Hu G 1998 Phys. Rev. Lett. 80 496
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1853-1856
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 1853-1856
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 1853-1856
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1853-1856
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 1853-1856
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1853-1856
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 1853-1856
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1853-1856
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 1853-1856
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 1853-1856
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1853-1856
[12] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 1853-1856
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 1853-1856
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 1853-1856
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 1853-1856
Viewed
Full text


Abstract