Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1849-1852    DOI:
Original Articles |
Resonance in Defect Turbulence under Periodic External Force
QIAO Chun;FENG Xiao-Bo;WANG Hong-Li;OUYANG Qi
School of Physics, and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871
Cite this article:   
QIAO Chun, FENG Xiao-Bo, WANG Hong-Li et al  2007 Chin. Phys. Lett. 24 1849-1852
Download: PDF(810KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The periodically forced spatially extended Brusselator is investigated in the chaotic regime. We explore resonant or non-resonant patterns generated under various forcing frequencies and forcing amplitudes. Resonant spatially uniform oscillation and irregular structures are found. Furthermore two types of regular spatial patterns are generated under appropriate parameters. Our
results of numerical simulations demonstrate that periodic force can give rise to resonant patterns in forced systems of spatiotemporal chaos similar to the situation of forced systems of regular oscillations.
Keywords: 05.45.Xt      82.40.Ck     
Received: 08 March 2007      Published: 25 June 2007
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01849
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIAO Chun
FENG Xiao-Bo
WANG Hong-Li
OUYANG Qi
[1] Coullet P, Lega J, Houchmanzadeh B andLajzerowicz J 1990 Phys. Rev. Lett. 65 1352
[2] Coullet P and Emilson K 1992 Physica (Amsterdam) D 61119
[3] Elphick C, Hagberg A and Meron E 1999 Phys. Rev. E 59 5285
[4] Park H K 2001 Phys. Rev. Lett. 86 1130
[5] Hemming C and Kapral R 2002 Physica D 168 10
[6] Barashenkov I V and Woodford S R 2005 Phys. Rev. E 71 026613
[7] Petrov V, Ouyang Q and Swinney H L 1997 Nature 388 655
[8] Lin A L, Bertram M, Martinez K, Swinney H L, ArdeleaL and Carey G F 2000 Phys. Rev. Lett. 84 4240
[9] Lin A L, Hagberg A, Ardelea A, Bertram M,Swinney H L and Meron E 2000 Phys. Rev. E 62 3790
[10] Vanag V K, Zhabotinsky A M and Epstein I R 2001 Phys. Rev.Lett. 86 552
[11] Yochelis A, Hagberg A, Meron E, Lin A L andSwinney H L 2002 SIAM J. Appl. Dyn. Syst. 1 236
[12] Martinez K, Lin A L, Kharrazian R, Sailer X andSwinney H L 2002 Physica D 168 2
[13] Lin A L, Hagberg A, Meron E and Swinney H L2004 Phys. Rev. E 69 066217
[14] Zhang K, Wang H, Qiao C and Ouyang Q 2006 Chin. Phys.Lett. 23 1414
[15] Bertram M, Beta C, Rotermund H H and Ertl G 2003 J. Phys.Chem. B 107 9610
[16] Ouyang Q 2000 Pattern Formation inReaction-Diffusion Systems (Shanghai: Scientific and TechnologicalEducation Publishing House) chap 7 pp 168--171 (in Chinese)
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 1849-1852
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1849-1852
[3] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 1849-1852
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 1849-1852
[5] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1849-1852
[6] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 1849-1852
[7] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 1849-1852
[8] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 1849-1852
[9] LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian . Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing[J]. Chin. Phys. Lett., 2011, 28(2): 1849-1852
[10] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 1849-1852
[11] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 1849-1852
[12] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 1849-1852
[13] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 1849-1852
[14] YUAN Xiao-Ping, CHEN Jiang-Xing, ZHAO Ye-Hua**, LOU Qin, WANG Lu-Lu, SHEN Qian . Spiral Wave Generation in a Vortex Electric Field[J]. Chin. Phys. Lett., 2011, 28(10): 1849-1852
[15] YUAN Xiao-Ping, ZHENG Zhi-Gang** . Ground-State Transition in a Two-Dimensional Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(10): 1849-1852
Viewed
Full text


Abstract