Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1509-1512    DOI:
Original Articles |
Remarks on Exactly Solvable Noncommutative Quantum Field
WANG Ning
Department of Physics, Ocean University of China, Qingdao 266003
Cite this article:   
WANG Ning 2007 Chin. Phys. Lett. 24 1509-1512
Download: PDF(221KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study exactly the solvable noncommutative scalar quantum field models of (2n) or (2n+1) dimensions. By writing out an equivalent action of the noncommutative field, it is shown that the special condition B.θ=±I in field theoretic context means the full restoration of the maximal U (∞) gauge symmetries broken due to kinetic term. It is further shown that the model can be obtained by dimensional reduction of a 2n-dimensional exactly solvable
noncommutative Ф4 quantum field model closely related to the 1+1-dimensional Moyal/matrix-valued nonlinear Schrodinger (MNLS) equation. The corresponding quantum fundamental commutation relation of the MNLS model is also given explicitly.
Keywords: 11.10.Nx      02.30.Ik     
Received: 06 November 2006      Published: 17 May 2007
PACS:  11.10.Nx (Noncommutative field theory)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01509
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Ning
[1] Gopakumar R et al 2000 J. High Energy Phys. 0005 020
[2] Gopakumar R et al 2003 Commun. Math. Phys. 233 355
[3] Aganagic M et al 2001 J. High Energy Phys. 0104 001
[4] Nekrasov N A et al 1998 Commun. Math. Phys. 198 689
[5] Gross D J and Nekrasov N A 2000 J. High Energy Phys. 0007 034
[6] Polychronakos A P 2000 Phys. Lett. B 495 407
[7] Jatkar D J et al 2000 J. High Energy Phys. 0009 018
[8] Dasgupta K et al 2000 J. High Energy Phys. 0006 022
[9] Harvey J A et al 2000 J. High Energy Phys. 0007 042
[10] Mandal G and Rey S J 2000 Phys. Lett. B 495 193
[11] Witten E Noncommutative Tachyons and String Field Theory
[arXiv: hep-th/0006071]
[12] Mandal G et al 2002 Eur. Phys. J. C 24 495
[13] Langmann E et al 2004 J. High Energy Phys. 0401 017
[14] Langmann E et al 2003 Phys. Lett. B 569 95
[15] Langmann E and Szabo R J 2002 Phys. Lett. B 533 168
[16] Ambj\'\o rn J et al 1999 J. High Energy Phys. 9911 029
[17] Kim S et al 2002 Phys. Rev. D 65 045009
[18] Seiberg N and Witten E 1999 J. High Energy Phys. 9909 032
[19] Seiberg N 2000 J. High Energy Phys. 0009 003
[20] Nair V P and Polychronakos A P 2001 Phys. Lett. B 505 267
[21] Bellucci S et al 2001 Phys. Lett. B 522 345
[22] Langmann E 2003 Nucl. Phys. B 654 404
[23] Wang N and Wadati M 2003 J. Phys. Soc. Jpn. 72 3055
[24] Sklyanin E K 1979 Sov. Phys. Dokl. 24 107 Sklyanin E K 1982 J. Sov. Math. 19 1546
[25] Kulish P P and Sklynin E K 1982 J. Sov. Math. 19 1596
[26] Faddeev L D 1981 Sov. Sci. Rev. Math. Phys. C 1 107
[27] Thacker H B 1983 Rev. Mod. Phys. 53 253
[28] Polychronakos A P 2005 Nucl. Phys. B 711 505
[29] Korepin V E et al 1993 Quantum Inverse Scattering Method andCorrelation Functions (London: Cambridge University Press)[1] Gopakumar R et al 2000 J. High Energy Phys. 0005 020
[2] Gopakumar R et al 2003 Commun. Math. Phys. 233 355
[3] Aganagic M et al 2001 J. High Energy Phys. 0104 001
[4] Nekrasov N A et al 1998 Commun. Math. Phys. 198 689
[5] Gross D J and Nekrasov N A 2000 J. High Energy Phys. 0007 034
[6] Polychronakos A P 2000 Phys. Lett. B 495 407
[7] Jatkar D J et al 2000 J. High Energy Phys. 0009 018
[8] Dasgupta K et al 2000 J. High Energy Phys. 0006 022
[9] Harvey J A et al 2000 J. High Energy Phys. 0007 042
[10] Mandal G and Rey S J 2000 Phys. Lett. B 495 193
[11] Witten E Noncommutative Tachyons and String Field Theory
[arXiv: hep-th/0006071]
[12] Mandal G et al 2002 Eur. Phys. J. C 24 495
[13] Langmann E et al 2004 J. High Energy Phys. 0401 017
[14] Langmann E et al 2003 Phys. Lett. B 569 95
[15] Langmann E and Szabo R J 2002 Phys. Lett. B 533 168
[16] Ambj\'\o rn J et al 1999 J. High Energy Phys. 9911 029
[17] Kim S et al 2002 Phys. Rev. D 65 045009
[18] Seiberg N and Witten E 1999 J. High Energy Phys. 9909 032
[19] Seiberg N 2000 J. High Energy Phys. 0009 003
[20] Nair V P and Polychronakos A P 2001 Phys. Lett. B 505 267
[21] Bellucci S et al 2001 Phys. Lett. B 522 345
[22] Langmann E 2003 Nucl. Phys. B 654 404
[23] Wang N and Wadati M 2003 J. Phys. Soc. Jpn. 72 3055
[24] Sklyanin E K 1979 Sov. Phys. Dokl. 24 107 Sklyanin E K 1982 J. Sov. Math. 19 1546
[25] Kulish P P and Sklynin E K 1982 J. Sov. Math. 19 1596
[26] Faddeev L D 1981 Sov. Sci. Rev. Math. Phys. C 1 107
[27] Thacker H B 1983 Rev. Mod. Phys. 53 253
[28] Polychronakos A P 2005 Nucl. Phys. B 711 505
[29] Korepin V E et al 1993 Quantum Inverse Scattering Method andCorrelation Functions (London: Cambridge University Press)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1509-1512
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1509-1512
[3] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 1509-1512
[4] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 1509-1512
[5] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1509-1512
[6] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1509-1512
[7] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 1509-1512
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 1509-1512
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1509-1512
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1509-1512
[11] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 1509-1512
[12] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 1509-1512
[13] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 1509-1512
[14] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 1509-1512
[15] YU Fa-Jun. Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy[J]. Chin. Phys. Lett., 2011, 28(12): 1509-1512
Viewed
Full text


Abstract