Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1490-1493    DOI:
Original Articles |
Multiscale Entropy under the Inverse Gaussian Distribution: Analytical Results
TANG Ying;PEI Wen-Jiang;XIA Hai-Shan;HE Zhen-Ya
Department of Radio Engineering, Southeast University, Nanjing 210096
Cite this article:   
TANG Ying, PEI Wen-Jiang, XIA Hai-Shan et al  2007 Chin. Phys. Lett. 24 1490-1493
Download: PDF(277KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The multiscale entropy (MSE) reveals the intrinsic multiple scales in the complexity of physical and physiological signals, which are usually featured by heavy-tailed distributions. However, most research results are pure experimental search. Recently, Costa et al. have made the first attempt to present the theoretical basis of MSE, but it only supports the Gaussian distribution [Phys Rev. E 71 (2005) 021906]. We present the theoretical basis of MSE under the inverse Gaussian distribution, a typical model for physiological, physical and financial data sets. The analysis allows for ncorrelated inverse Gaussian process and 1/f noise with the multivariate
inverse Gaussian distribution, and then provides a reliable foundation for the potential applications of MSE to explore complex physical and physical time series.
Keywords: 05.40.Ca      05.45.Tp      65.40.Gr     
Received: 23 October 2006      Published: 17 May 2007
PACS:  05.40.Ca (Noise)  
  05.45.Tp (Time series analysis)  
  65.40.Gr  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01490
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Ying
PEI Wen-Jiang
XIA Hai-Shan
HE Zhen-Ya
[1] Pincus S M 1991 Proc. Natl. Acad. Sci. USA 88 2297
[2] Richman J S and Moorman J R 2000 Am. J. Physiol. 278H2039
[3] Lin J and Ning X B 2005 Chin. Sci. Bull. 50 1269
[4] Costa M, Goldberger A L and Peng C K 2002 Phys. Rev. Lett. 89 068102
[5] Costa M et al %, Goldberger A L and Peng C K2005 Phys. Rev. E 71 021906
[6] Thuraisingham R A and Gottwald G A 2006 Physica A 366 323
[7] Markowiec D Galaska R, Dudkowska A, Rynkiewicz A and Zwierz M 2006 Physica A 369 632
[8] Ferrario M, Signorini M G, Magenes G and Cerutti S 2006 IEEE Trans. Biomedical Engin. 53 119
[9] Costa M, Goldberger A L and Peng C K 2005 Phys. Rev.Lett. 95 198102
[10] Ilow J and Hatzinakos D 1998 IEEE Trans. Signal Proc. 46 1601
[11] Iyengar S and Liao Q 1997 Biol. Cybem. 77 289
[12] Barbieri R et al %, Matten E C, Alabi A A, and.Brown E N2005 Am. J.Physiol. 288 H424
[13] Sun Z et al %, He D, Liang L and Cruickshank H2004 IEE Proc.Softw. 151 248
[14] Kamstra M and Milevsky M A 2005 Quantitative Finance 5 3 237
[15] Folks J L and Chhikara R S 1978 J. R. Statist. Soc.London B 40 263
[16] Ninness B 1998 IEEE Trans. Inform. Theor. 44 1 32
[17] Barndorff-Nielsen O E et al 1991 Canadian J. Statist. 20 209
[18] Minami M 2003 Commun. Statist. 32 2285
[19] Bao J D, Huang H Y and Jia Y 2005 Phys. Rev. E 72051105
[20] Bao J D 2005 Prog. Phys. 25 359 (in Chinese)
Related articles from Frontiers Journals
[1] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 1490-1493
[2] KONG De-Ren, XIE Hong-Bo** . Assessment of Time Series Complexity Using Improved Approximate Entropy[J]. Chin. Phys. Lett., 2011, 28(9): 1490-1493
[3] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 1490-1493
[4] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 1490-1493
[5] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 1490-1493
[6] QU Jing-Yi**, WANG Ru-Bin, ZHANG Yuan, DU Ying . A Neurodynamical Model for Selective Visual Attention[J]. Chin. Phys. Lett., 2011, 28(10): 1490-1493
[7] REN Yuan, MIAO Wei, YAO Qi-Jun, ZHANG Wen, SHI Sheng-Cai** . Terahertz Direct Detection Characteristics of a Superconducting NbN Bolometer[J]. Chin. Phys. Lett., 2011, 28(1): 1490-1493
[8] LIU Xiong-Wei**, NA Xue-Sen, XU Ren-Xin, QIAO Guo-Jun . Particle Emission-Dependent Timing Noise of Pulsars[J]. Chin. Phys. Lett., 2011, 28(1): 1490-1493
[9] YANG Yue, HU Han-Ping, XIONG Wei, CHEN Jiang-Hang . Network Traffic Anomaly Detection Method Based on a Feature of Catastrophe Theory[J]. Chin. Phys. Lett., 2010, 27(6): 1490-1493
[10] LI Jian-Kang, SONG Xiang-Rong, YIN Ke. Discrete Capability of the Lempel-Ziv Complexity Algorithm on a Vibration Sequence[J]. Chin. Phys. Lett., 2010, 27(6): 1490-1493
[11] ZHAO Liang, LUO Xiao-Qin, WU Dan, ZHU Shi-Qun, GU Ji-Hua. Entropic Stochastic Resonance Driven by Colored Noise[J]. Chin. Phys. Lett., 2010, 27(4): 1490-1493
[12] TIAN Jing, CHEN Yong. Effect of Time Delay on Stochastic Tumor Growth[J]. Chin. Phys. Lett., 2010, 27(3): 1490-1493
[13] DU Ying, LU Qi-Shao. Noise Effects on Temperature Encoding of Neuronal Spike Trains in a Cold Receptor[J]. Chin. Phys. Lett., 2010, 27(2): 1490-1493
[14] LI Jian-Long, ZENG Ling-Zao, ZHANG Hui-Quan. A Demonstration of Equivalence between Parameter-Induced and Noise-Induced Stochastic Resonances with Multiplicative and Additive Noises[J]. Chin. Phys. Lett., 2010, 27(10): 1490-1493
[15] DING Gang, LIN Lin, ZHONG Shi-Sheng. Functional Time Series Prediction Using Process Neural Network[J]. Chin. Phys. Lett., 2009, 26(9): 1490-1493
Viewed
Full text


Abstract