Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1494-1497    DOI:
Original Articles |
An Approach to Analyse Phase Synchronization in Oscillator Networks with Weak Coupling
ZHANG Jian-Bao2;LIU Zeng-Rong1;LI Ying2
1Institute of Systems Biology, Shanghai University, Shanghai 2004442College of Sciences, Shanghai University, Shanghai 200444
Cite this article:   
ZHANG Jian-Bao, LIU Zeng-Rong, LI Ying 2007 Chin. Phys. Lett. 24 1494-1497
Download: PDF(275KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study phase synchronization in oscillator networks through phase reduced method. The dynamics of networks is reduced to phase equations
by this method. Analysing the phase equations through the master stability function method, one obtains that the oscillators with identical frequency can be in-phase synchronized by weak balanced coupling. Similarly, the problem of frequency synchronization of oscillators with different frequencies is transformed to the existence of a locally asymptotically stable equilibrium of the phase error system.
Keywords: 05.45.Xt      03.65.Vf     
Received: 23 February 2007      Published: 17 May 2007
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01494
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Jian-Bao
LIU Zeng-Rong
LI Ying
[1] Strogatz S H 2001 Nature 410 268
[2] Shi X and Lu Q S 2007 Chin. Phys. Lett. 24 636
[3] Zhang J, Hou Z and Xin H 2006 Chin. Phys. Lett. 23 2364
[4] Guckenheimer J 1975 J. Math. Biol. 1 259
[5] Kuramoto Y 1984 Chemical Oscillations, Waves andTurbulence (New York: Springer)
[6] Winfree A T 1967 J. Theor. Biol. 16 15
[7] Strogatz S H 2000 Physica D 143 1
[8] Li X 2006 Physica D 223 242
[9] Teramae J and Tanaka J 2004 Phys. Rev. Lett. 93 20
[10] Nakao H, Arai K, Nagai K, Yasuhiro T and Kuramoto Y 2005 Phys. Rev. E 72 026220
[11] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[12] Ermentrout J and Kopell N 1991 J. Math. Biol. 29 195
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 1494-1497
[2] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 1494-1497
[3] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 1494-1497
[4] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1494-1497
[5] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 1494-1497
[6] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 1494-1497
[7] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 1494-1497
[8] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1494-1497
[9] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 1494-1497
[10] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 1494-1497
[11] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 1494-1497
[12] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 1494-1497
[13] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 1494-1497
[14] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 1494-1497
[15] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 1494-1497
Viewed
Full text


Abstract