Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1437-1440    DOI:
Original Articles |
Transient and Stationary Simulations for a Quantum Hydrodynamic Model
HU Xin;TANG Shao-Qiang
LTCS, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871
Cite this article:   
HU Xin, TANG Shao-Qiang 2007 Chin. Phys. Lett. 24 1437-1440
Download: PDF(275KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The transient and stationary characteristics of a one-dimensional quantum hydrodynamic model are comparatively studied for semiconductor charge transport in a resonant tunnelling diode. When the bias is not small, our numerical results show a deviation of the asymptotic transient solutions from the stationary ones. A dynamic instability accounts for such deviation. The stationary quantum hydrodynamic model is therefore unsuitable in general for simulating quantum devices.
Keywords: 02.60.Cb      73.63.-b      02.30.Jr     
Received: 20 September 2006      Published: 17 May 2007
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01437
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Xin
TANG Shao-Qiang
[1] Chang L L, Esaki L and Tsu R 1974 Appl. Phys. Lett. 24 593
[2] Sollner TCLG, Goodhue W D, Tannenwald P E, Parker C D andPeck D D 1983 Appl. Phys. Lett. 43 588
[3] Degond P, M\'{ehats F and Ringhofer C 2005 J. Stat.Phys. 118 625
[4] Gardner C 1994 SIAM J. Appl. Math. 54 409
[5] Gardner C 1995 VLSI Design 3 201
[6] Jungel A and Tang S 2006 Appl. Numer. Math. 56 899
[7] Jungel A, Matthes D and Mili\v{si\'{c J P 2006 SIAM J. Appl. Math. 67 46
[8] Gualdani M and Jungel A 2004 Eur. J. Appl. Math. 15 577
[9] Pinnau R and Unterreiter A 1999 SIAM J. Num. Anal. 37 211
[10] Zhao P, Woolard DL and Cui HL 2003 Phys. Rev. B 67 085312
[11] Frensley WR 1990 Rev. Mod. Phys. 62 745
[12] Markowich P, Ringhofer C and Schmeiser C 1990 SemiconductorEquations (Vienna: Springer)
[13] Wigner E 1932 Phys. Rev. 40 749
[14] Caussignac Ph, Descloux J and Yamnahakki A 2002 Math.Models. Meth. Appl. Sci. 12 1049
[15] Degond P, Jungel A and Pietra P 2000 SIAM J. Sci.Comput. 22 986
[16] Arnold A, L\'{opez J L, Markowich P and Soler C 2004 Rev. Mat. Iberoam 20(3) 771
[17] Degond P and Ringhofer C 2003 J. Stat. Phys. 112587
[18] Ferry D and Zhou J R 1993 Phys. Rev. B 48 7944
[19] Levermore C 1996 J. Stat. Phys. 83 1021
[20] L\'{opez J 2004 Phys. Rev. E 69 026610
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1437-1440
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 1437-1440
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1437-1440
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1437-1440
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1437-1440
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1437-1440
[7] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1437-1440
[8] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1437-1440
[9] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1437-1440
[10] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 1437-1440
[11] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 1437-1440
[12] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1437-1440
[13] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 1437-1440
[14] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 1437-1440
[15] PAN Li-Jun, JIA Yu, **, SUN Qiang, HU Xing . Electronic Properties of Boron Nanotubes under Uniaxial Strain: a DFT study[J]. Chin. Phys. Lett., 2011, 28(8): 1437-1440
Viewed
Full text


Abstract