Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1433-1436    DOI:
Original Articles |
Initial-value Problems for Extended KdV--Burgers Equations via Generalized Conditional Symmetries
ZHANG Shun-Li 1,2;LI Ji-Na1
1Center for Nonlinear Studies, Department of Mathematics, Northwest University, Xi'an 7100692Center of Nonlinear Science, Ningbo University, Ningbo 315211
Cite this article:   
ZHANG Shun-Li, LI Ji-Na 2007 Chin. Phys. Lett. 24 1433-1436
Download: PDF(230KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We classify initial-value problems for extended KdV--Burgers equations via generalized conditional symmetries. These equations can be reduced to Cauchy problems for some systems of first-order ordinary differential equations. The obtained reductions cannot bederived within the framework of the standard Lie approach.
Keywords: 02.30.Jr      02.20.Sv      04.20.Ex     
Received: 26 February 2007      Published: 17 May 2007
PACS:  02.30.Jr (Partial differential equations)  
  02.20.Sv (Lie algebras of Lie groups)  
  04.20.Ex (Initial value problem, existence and uniqueness of solutions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01433
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Shun-Li
LI Ji-Na
[1] Ovsiannikov L V 1982 Group Analysis of DifferentialEquations (New York: Academic) Olver P J 1993 Application of Lie Groups to DifferentialEquations (New York: Springer) Bluman G W and Kumei S 1989 Symmetries and DifferentialEquations (New York: Springer) Ibragimov Kh N 1985 Transformation Groups Applied toMathematical Physics (Dordrecht: Reidel)
[2] Fushchych W I and Zhdanov R Z 1994 Proc. Acad. Sci.Ukraine 5 40
[3] Fokas A and Liu Q 1994 Theor. Math. Phys. 99 263
[4] Galaktionov V A 1990 Diff. Int. Eqns. 3 863
[5] Qu C Z, Zhang S L and Liu R C 2000 Physica D 144 97 Estevez P G, Qu C Z and Zhang S L 2002 J. Math. Anal.Appl. 275 44 Zhang S L, Lou S Y and Qu C Z 2002 Chin. Phys. Lett. 12 1741 Zhang S L, Lou S Y and Qu C Z 2003 J. Phys. A: Math.Gen. 36 12223 Zhang S L and Lou S Y 2004 Physica A 335 430 Zhang S L, Lou S Y and Qu C Z 2006 Chin. Phys. 15 2765
[6] Olver P J 1994 Proc. R. Soc. London A 444 509
[7] Qu C Z 1997 Stud. Appl. Math. 99 107 Qu C Z 1999 IMA J. Appl. Math. 62 283 Qu C Z 2000 Nonlin. Anal. Theory. Meth. Appl. 42 301
[8] Zhdanov R Z 1995 J. Phys. A: Math. Gen. 28 3841
[9] Zhdanov R Z 2000 Proc. Institute of Mathematics (Kyiv:Institute of Mathematics) vol 30 part 1 p 255
[10] Zhdanov R Z and Tsyfra I M 1996 Ukr. Math. J. 48 595
[11] Zhdanov R Z, Tsyfra I M and Popovych R O 1999 J. Math.Anal. Appl. 238 101
[12] Bluman G and Cole J D 1969 J. Math. Mech. 18 1025
[13] Olver P J and Rosenau P 1986 Phys. Lett. A 114107
[14] Fushchych W I and Tsyfra I M 1987 J. Phys. A: Math. Gen. 20 L45
[15] Fushchych W I and Zhdanov R Z 1989 Phys. Rep. 172 123
[16] Clarkson P and Kruskal M D 1989 J. Math. Phys. 30 2201
[17] Levi D and Winternitz P 1989 J. Phys. A: Math.Gen. 22 2915
[18] Zhdanov R Z and Andreitsev A Yu 2000 J. Phys. A:Math. Gen. 33 5763
[19] Basarab-Horwath P and Zhdanov R Z 2001 J. Math. Phys. 42 376
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1433-1436
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 1433-1436
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1433-1436
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1433-1436
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1433-1436
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1433-1436
[7] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 1433-1436
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1433-1436
[9] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 1433-1436
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1433-1436
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 1433-1436
[12] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 1433-1436
[13] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 1433-1436
[14] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1433-1436
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1433-1436
Viewed
Full text


Abstract