Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1429-1432    DOI:
Original Articles |
Periodic Bifurcation and Soliton Deflexion for Kadomtsev--Petviashvili Equation
DAI Zheng-De 1,2,3;LI Shao-Lin4;LI Dong-Long2;ZHU Ai-Jun5
1School of Mathematics and Physics, Yunnan University, Kunming 6500912 Department of Information and Computing Science, Guangxi Institute of Technology, Liuzhou 5450053 The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Hong Kong4 Department of Mathematics, Honghe College, Mengzi 6611005 School of Mathematics and Physics, Nanhua University, Hengyang 421001
Cite this article:   
DAI Zheng-De, LI Shao-Lin, LI Dong-Long et al  2007 Chin. Phys. Lett. 24 1429-1432
Download: PDF(1416KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The spatial--temporal bifurcation for Kadomtsev--Petviashvili (KP) equations is considered. Exact two-soliton solution and doubly periodic solution to the KP-I equation, and two classes of periodic soliton solutions in different directions to KP-II are obtained using the bilinear form, homoclinic test technique and temporal and spatial transformation method, respectively. The equilibrium solution u0=-1/6, a unique spatial--temporal bifurcation which is periodic bifurcation for KP-I and deflexion of soliton for KP-II, is investigated.
Keywords: 02.30.Jr      47.20.Ky      47.35.Fg      46.70.Lk     
Received: 04 December 2006      Published: 17 May 2007
PACS:  02.30.Jr (Partial differential equations)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  47.35.Fg (Solitary waves)  
  46.70.Lk (Other structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01429
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DAI Zheng-De
LI Shao-Lin
LI Dong-Long
ZHU Ai-Jun
[1] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolutionand Inverse Scattering (Cambridge: Cambridge University Press)
[2] Konopechenko B 1993 Solitons in Multidimensions, InverseSpectral Transform Method (Singapore: World Scientific)
[3] Kadomtsev B B and Petviashvili V I 1970 Dokl. Akad. NaukSSSR 192 532
[4] Satsuma J 1976 J. Phys. Soc. Jpn. 40 286
[5] Manakov S V, Zakharov V E, Bordag L A, Its A R andMatveev V B 1977 Phys. Lett. A 63 205
[6] Johnson R S and Thompson S 1978 Phys. Lett. A 66 279
[7] Galkin V M, Pelinovsky D E and Stepanyants Y A 1995 Physica D 80 246
[8] Pelinovsky D E 1998 J. Math. Phys. 39 5377
[9] Liu Q P and Manas M 1999 J. Nonlinear Sci. 9 213
[10] Miles J W 1979 J. Fluid Mech. 79 157
[11] Miles J W 1982 J. Fluid Mech. 115 315
[12] Dai Z D, Jiang M R, Dai Q Y and Li S L 2006 Chin. Phys.Lett. 23 1065
[13] Dai Z D, Huang J, Jiang M R and Wang S H 2005 ChaosSolitons and Fractals 26 1189
[14] Dai Z D, Li S L, Dai Q Y and Huang J 2007 ChaosSolitons and Fractals (in press)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1429-1432
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 1429-1432
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1429-1432
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1429-1432
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1429-1432
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1429-1432
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1429-1432
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1429-1432
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 1429-1432
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 1429-1432
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1429-1432
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1429-1432
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1429-1432
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 1429-1432
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1429-1432
Viewed
Full text


Abstract