Original Articles |
|
|
|
|
Enhanced Green Electrophosphorescence from Oxadiazole-Functionalized Iridium Complex-Doped Devices Using Poly(9,9-Dioctylfluorene) Instead of Poly(N-Vinylcarbazole) as a Host Matrix |
LUO Cui-Ping1;ZHOU Ji1;WANG Lei2;Deng Ji-Yong1;QIN Zhi-Jun1, ZHU Mei-Xiang1;ZHU Wei-Guo 1,3 |
1College of Chemistry, Xiangtan University, Xiangtan 4111052IPOMD, South China University of Technology, Guangzhou 5106403Key Laboratory of Low-Dimensional Materials and Application Technology (Ministry of Education), Xiangtan University, Xiangtan 411105 |
|
Cite this article: |
LUO Cui-Ping, ZHOU Ji, WANG Lei et al 2007 Chin. Phys. Lett. 24 1386-1389 |
|
|
Abstract Optoelectronic properties of the oxadiazole-functionalized iridium complex-doped polymer light-emitting devices (PLEDs) are demonstrated with two different polymeric host matrices at the dopant concentrations 1--8%. The devices using a blend of poly(9,9-dioctylfluorene)(PFO) and 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) as a host matrix exhibited a maximum luminance efficiency of 11.3cd/A at 17.6mA/cm2. In contrast, the devices using a blend of poly(N-vinylcarbazole) (PVK) and PBD as a host matrix reveal only a peak luminance efficiency of 6.5cd/A at 4.1mA/cm2. The significantly enhanced electrophosphorescent emissions are observed in the devices with the PFO-PBD blend as a host matrix. This indicates that choice of polymers in the host matrices is crucial to achieve highly efficient phosphorescent dye-doped PLEDs.
|
Keywords:
78.60.Fi
78.66.Qn
85.06.Jb
|
|
Received: 06 October 2006
Published: 23 April 2007
|
|
|
|
|
|
[1] O'Brien D H, Giebeler C, Fletcher R B, Cadby A J, Palilis LC, Lidzey D G, Lane P A, Bradley D D C and Blau W 2001 Synth.Meter. 116 379 [2] Hwang F M, Chen H Y and Chen P S 2005 Inorg. Chem. 441344 [3] Yang X H, Neher D, Hertel D and D\"aubler I K 2004 Adv. Mater. 16 161 [4] Gong X, Robinson M R, Ostrowski J C, Moses D, Bazan G C and HeegerA J 2002 Adv. Mater. 14 585 [5] Gong X, Ostrowski J C, Moses D, Bazan G C and Heeger A J 2003 Adv. Funct. Mater. 13 439 [6] Liu H H, He J, Wang P F, Xie H Z, Zhang X H, Lee C S, Sun B Q andXia Y J 2005 Appl. Phys. Lett. 87 221103 [7] Chang C Y, Hsieh S N, Wen T C, Guo T F and Cheng C H 2006 Chem. Phys. Lett. 418 50 [8] Chen F C, He G F and Yang Y 2003 Appl. Phys. Lett. 821006 [9] Wu Z L, Luo C P, Hu Z Y, Jiang C Y, Huang F L, Zhu K M, Zhu M X andZhu W G 2006 Chin. Phys. Lett. 23 3091 [10] Gong X, Ma W L, Ostrowski J C, Bechgarrd K, Bazan G C, Heeger A J,Xiao S and Moses D 004 Adv. Funct. Mater. 14 393 [11] Zhu W G, Mo Y Q, Yang W, Yuan M and Cao Y 2002 Appl. Phys.Lett. 80 2045 [12] Xiao S, Nguyen M, Gong X, Cao Y, Wu H B, Moses D and Heeger A J2003 Adv. Funct. Mater. 13 25 [13] Zhu M X, Wu Z L, Jiang C Y, Liu J, Li J R, Xing K Q, Yang Y P, GanQ, Cao Y and Zhu W G 2005 Chin. Phys. Lett. 22 1793 [14] Jiang C Y, Yang W, Peng J B, Xiao S and Cao Y 2004 Adv.Mater. 16 537 [15] Liang B, Jiang C Y, Chen Z, Zhang X J, Shi H H and Cao Y 2006 J. Mater. Chem. 16 1281 [16] Zhang X J, Jiang C Y, Mo Y Q, Xu Y H, Shi H H and Cao Y 2006 Appl. Phys. Lett. 88 05116 [17] Campbell L H, Smith D L, Tretiak S, Martin R L, Neef C J andFerraris J P 2002 Phys. Rev. B 65 085210 [18] Wu Z L, Zhu M X, Liu Y, Liu J, Li J R, Yang Y P, Gan Q and Zhu W G2005 Chin. Chem. Lett. 16 241 [19] Gong X, Moss D, Heeger A J, Liu S and Jen A K Y 2003 Appl.Phys. Lett. 83 183 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|