Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1170-1172    DOI:
Original Articles |
Differential System's Nonlinear Behaviour of Real Nonlinear Dynamical Systems
YANG Zheng-Ling;WANG Wei-Wei;YIN Zhen-Xing;ZHANG Jun;CHEN Xi
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072
Cite this article:   
YANG Zheng-Ling, WANG Wei-Wei, YIN Zhen-Xing et al  2007 Chin. Phys. Lett. 24 1170-1172
Download: PDF(266KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Chaos attractor behaviour is usually preserved if the four basic arithmetic perations, i.e. addition, subtraction, multiplication, division, or their compound,
are applied. First-order differential systems of one-dimensional real discrete dynamical systems and nonautonomous real continuous-time dynamical systems are also dynamical systems and their Lyapunov exponents are kept, if they are twice differentiable. These two conclusions are shown here by the definitions of dynamical system and Lyapunov exponent. Numerical simulations support our analytical results. The conclusions can apply to higher order differential systems if their corresponding order differentials exist.
Keywords: 05.45.Ac      05.45.Tp      89.75.Fb     
Received: 01 January 1900      Published: 23 April 2007
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Tp (Time series analysis)  
  89.75.Fb (Structures and organization in complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01170
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Zheng-Ling
WANG Wei-Wei
YIN Zhen-Xing
ZHANG Jun
CHEN Xi
[1] Gan J C and Xiao X C 2003 Acta Phys. Sin. 52 1085 (inChinese)
[2] Yu J J and Xu H B 2006 Acta Phys. Sin. 55 0042 (inChinese)
[3] Yu J J, Cao H F, Xu H B and Xu Q 2006 Acta Phys. Sin. 55 0029 (in Chinese)
[4] Masoller C, Cavalcante Hugo L D de S and Leite J R Rios 2001 Phys. Rev. E 64 037202
[5] Jiang M H, Shen Y, Jian J G and Liao X X 2006 Phys.Lett. A 350 221
[6] Canovas J S, Linero A and Peralta-Salas D 2006 Physica D 218 177
[7] Almeida J, Peralta-Salas D and Romera M 2005 Physica D 200 124
[8] Boyarsky A, Gora P and Islam M S 2005 Physica D 210 284
[9] Hao B L 1993 Starting with Parabolas: An Introduction toChaotic Dynamics (Shanghai: Shanghai Scientific and TechnologicalEducation Publishing House) (in Chinese)
[10] Chen S G 1992 Mapping and Chaos (Beijing: National DefenceIndustry Press) (in Chinese)
[11] Parker T S and Chua L O 1987 Proc. IEEE 75 982
[12] Shimada I, Nagashima T 1979 Prog. Theor. Phys. 61 1605
[13] Wiesel W E 1993 Phys. Rev. E 47 3686
[14] Wiesel W E 1993 Phys. Rev. E 47 3692
[15] Okushima T 2003 Phys. Rev. Lett. 91 254101
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1170-1172
[2] ZHAO Qing-Bai,ZHANG Xiao-Fei,SUI Dan-Ni,ZHOU Zhi-Jin,CHEN Qi-Cai,TANG Yi-Yuan,**. The Efficiency of a Small-World Functional Brain Network[J]. Chin. Phys. Lett., 2012, 29(4): 1170-1172
[3] CHEN Duan-Bing**,GAO Hui. An Improved Adaptive model for Information Recommending and Spreading[J]. Chin. Phys. Lett., 2012, 29(4): 1170-1172
[4] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 1170-1172
[5] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 1170-1172
[6] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 1170-1172
[7] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 1170-1172
[8] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 1170-1172
[9] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 1170-1172
[10] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 1170-1172
[11] KONG De-Ren, XIE Hong-Bo** . Assessment of Time Series Complexity Using Improved Approximate Entropy[J]. Chin. Phys. Lett., 2011, 28(9): 1170-1172
[12] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 1170-1172
[13] CHENG Hong-Yan, YANG Jun-Zhong** . Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(6): 1170-1172
[14] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 1170-1172
[15] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 1170-1172
Viewed
Full text


Abstract