Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1173-1176    DOI:
Original Articles |
Exact Analytic N-Soliton-Like Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Model from Plasmas and Fluid Dynamics
ZHANG Chun-Yi 1,2;YAO Zhen-Zhi3;ZHU Hong-Wu3; XU Tao3;LI Juan3;MENG Xiang-Hua3;GAO Yi-Tian1
1Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics (Ministry of Education), Beijing University of Aeronautics and Astronautics, Beijing 1000832Meteorology Center of Air Force Command Post, Changchun 1300513School of Science, Beijing University of Posts Telecommunications, Beijing 100876
Cite this article:   
ZHANG Chun-Yi, YAO Zhen-Zhi, ZHU Hong-Wu et al  2007 Chin. Phys. Lett. 24 1173-1176
Download: PDF(237KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Applicable in fluid dynamics and plasmas, a generalized variable-coefficient Korteweg--de Vries (vcKdV) model is investigated. The bilinear form and analytic N-soliton-like solution for such a model are derived by the Hirota method and Wronskian technique. Additionally, the bilinear auto-Backlund transformation between (N-1)-soliton-like and N-soliton-like solutions is verified.
Keywords: 05.45.Yv      47.35.Fg      02.30.Ik      02.70.Wz     
Received: 29 December 2006      Published: 23 April 2007
PACS:  05.45.Yv (Solitons)  
  47.35.Fg (Solitary waves)  
  02.30.Ik (Integrable systems)  
  02.70.Wz (Symbolic computation (computer algebra))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01173
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Chun-Yi
YAO Zhen-Zhi
ZHU Hong-Wu
XU Tao
LI Juan
MENG Xiang-Hua
GAO Yi-Tian
[1] Tian B, Wei G M, Zhang C Y, Shan W R and Gao Y T 2006 Phys. Lett. A 356 8
[2] Formaggia L, Nobile F, Quarteroni A and Veneziani A 1999 Comput. Visual Sci. 2 75 Olufsen M 2000 Stud. Health Technol. Inform. 71 79 Quarteroni A, Tuveri M and Veneziani A 2000 Comput. VisualSci. 2 163 Zamir M 2000 The Physics of Pulsatile Flow (New York: Springer)
[3] Demiray H 2004 Int. J. Engng. Sci. 42 203
[4] Huang G X, Szeftel J and Zhu S H 2002 Phys. Rev. A 65 053605
[5] Dai H H and Huo Y 2002 Wave Motion 35 55
[6] Holloway P, Pelinovsky E and Talipova T 1999 J. Geophys.Res. C 104 18333
[7] Grimshaw R H J and Mitsudera H 1993 Stud. Appl. Math. 90 75
[8] Ei G A and Grimshaw R H J 2002 Chaos 12 1015
[9] Frantzeskakis D J, Proukakis N P and Kevrekidis P G 2004 Phys. Rev. A 70 015601 Hirota R 1971 Phys. Rev. Lett. 27 1192 Hirota R 1974 Progr. Theor. Phys. Suppl. 52 1498 Hirota R, Hu X B and Tang X Y 2003 J. Math. Anal. Appl. 288 326 Hirota R and Satsuma J 1976 J. Phys. Soc. Jpn. 41 2141
[10] Satsuma J 1979 J. Phys. Soc. Jpn. 46 395 Freeman N C, Horrocks G and Wilkinson P 1981 Phys. Lett. A 81 305 Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1 Nimmo J J C and Freeman N C 1983 Phys. Lett. A 95 4 Yao Z Z, Zhang C Y, Zhu H W, Meng X H, Xu T and Tian B No200701-178 Science paper Onlinehttp://www.paper.edu.cn/index.html Zhu H W and Tian B No 200701-216 {\em Science paper Onlinehttp://www.paper.edu.cn/index.html
[11] Deng S F 2006 Chin. Phys. Lett. 23 1662 Zhang D J arXiv:nlin.SI/0603008 Zhang D J and Chen D Y 2004 J. Phys. A 37 851 Deng S F 2005 Commun. Theor. Phys. 43 961
[12] Grimshaw R 1979 Proc. R. Soc. London A 368 359 Joshi N 1987 Phys. Lett. A 125 456
[13] Hirota R 1979 J. Phys. Soc. Jpn. 46 1681
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1173-1176
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1173-1176
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1173-1176
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1173-1176
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1173-1176
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1173-1176
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1173-1176
[8] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1173-1176
[9] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 1173-1176
[10] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 1173-1176
[11] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1173-1176
[12] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1173-1176
[13] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 1173-1176
[14] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 1173-1176
[15] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1173-1176
Viewed
Full text


Abstract