Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1162-1165    DOI:
Original Articles |
Stochastic Resonance in the Tumour Cell Growth Model
CAI Jian-Chun 1;WANG Can-Jun 1,2;MEI Dong-Cheng1
1Department of Physics, Yunnan University, Kunming 6500912Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721007
Cite this article:   
CAI Jian-Chun, WANG Can-Jun, MEI Dong-Cheng 2007 Chin. Phys. Lett. 24 1162-1165
Download: PDF(235KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The phenomenon of stochastic resonance (SR) in the tumour cell growth model subjected cross-correlated noises is investigated. When a weakly periodic signal is added to the system, the signal-to-noise ratio RSNR is derived by the quasi-steady-state probability distribution function and the adiabatic elimination method. Based on the derived RSNR, the effects of these parameters (the cross-correlated strength λ and the cross-correlated time τ) are analysed by numerical calculation. It is found that the existence of a maximum in RSNR is the identifying characteristic of the SR phenomenon. The maximum of RSNR decreases with the increase of λ and increases with the increase of τ.
Keywords: 05.40.-a      02.50.-r     
Received: 01 January 1900      Published: 23 April 2007
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01162
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Jian-Chun
WANG Can-Jun
MEI Dong-Cheng
[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453
[2]Benzi R, Parisi G, Sutera A and Vulpiani A 1982 Tellus 34 10
[3] Fauve S and Heslot F 1983 Phys. Lett. A 97 5
[4] McNamara B, Wiesenfeld K and Roy R 1988 Phys. Rev.Lett. 60 2626
[5] Hu G 1994 Stochastic Forces and Nonlinear Systems(Shanghai: Shanghai Scientific and Technological Education Publishing House)(in Chinese)
[6]Stocks N G, Stein N D and McClintock P V E 1993 J. Phys.A 26 385
[7] McNamara B and Wiesenfeld K 1989 Phys. Rev. A 394854
[8] Jia Y, Zheng X P, Hu X M and Li J R 2001 Phys. Rev.E 63 031107
[9] Luo X Q and Zhu S Q, 2003 Phys. Rev. E 67 021104
[10] Ray R and Sengupta S 2006 Phys. Lett. A 353 364
[11] Guo F, Zhou Y R, Jiang S Q and Gu T X Chin. Phys. 2006 15 947
[12] Han L B, Cao L, Wu D J and Wang J 2006 Physica A 366 159
[13] Zhang L Y, Cao L and Wu D J 2003 Chin. Phys. Lett. 20 25
[14] Wang J, Bai Y M, Cao L, Wu D J and Ma X Y 2006 Physica A 368 31
[15] Douglas J K, Wilkens L, Pantazelou E and Moss F 1993 Nature 365 337
[16] Simonotto E, Riani M, Seife C, Roberts M, Twitty J and MossF 1997 Phys. Rev. Lett. 78 1186
[17] Zhong W R, Shao Y Z, and He Z H 2006 Phys. Rev. E 73 060902(R)
[18] Ai B Q, Wang X J, Liu G T and Liu L G 2003 Phys. Rev. E 67 022903
[19]Mei D C, Xie C W and Zhang L 2004 Eur.Phys. J. B 41 107
[20] Panetta J C 1995 Appl. Math. Lett. 8 83
[21] Lipowski A and Lipowska D 2000 J. Phys. A 276 456
[22] Guardia E and San Miguel M 1985 Phys. Lett. A 1099
[23]Gardiner C W 1983 Handbook of Stochastic Methods, SpringerSeries in Synergetics (Berlin: Springer) vol 13
[24] Madureira A J R, H\"{anggi P and Wio H S 1996 Phys.Lett. A 217 248
Related articles from Frontiers Journals
[1] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 1162-1165
[2] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 1162-1165
[3] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 1162-1165
[4] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 1162-1165
[5] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 1162-1165
[6] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1162-1165
[7] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 1162-1165
[8] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 1162-1165
[9] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 1162-1165
[10] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 1162-1165
[11] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 1162-1165
[12] WANG Shao-Hua, YANG Ming**, WU Da-Jin . Diffusion of Active Particles Subject both to Additive and Multiplicative Noises[J]. Chin. Phys. Lett., 2011, 28(2): 1162-1165
[13] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 1162-1165
[14] TANG Jun**, QU Li-Cheng, LUO Jin-Ming . Robustness of Diversity Induced Synchronization Transition in a Delayed Small-World Neuronal Network[J]. Chin. Phys. Lett., 2011, 28(10): 1162-1165
[15] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 1162-1165
Viewed
Full text


Abstract