Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1158-1161    DOI:
Original Articles |
Thermodynamic Interpretation of Field Equations at Horizon of BTZ Black Hole
M. Akbar
Institute of Theoretical Physics, Chinese Academy of Sciences, PO Box 2735, Beijing 100080
Cite this article:   
M. Akbar 2007 Chin. Phys. Lett. 24 1158-1161
Download: PDF(205KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A spacetime horizon comprising with a black hole singularity acts like a boundary of a thermal system associated with the notions of temperature
and entropy. In the case of static metric of Banados--Teitelboim--Zanelli (BTZ) black hole, the field equations near the horizon boundary can be expressed as a thermal identity dE = TdS + PrdA, where E = M is the mass of BTZ black hole, dA is the change in the area of the black hole horizon when the horizon is displaced infinitesimally small, Pr is the radial pressure provided by the source of Einstein equations, S= 4πa is the entropy and T =k/2π is the Hawking temperature associated with the horizon. This approach is studied further to generalize it for non-static BTZ black hole, showing that it is also possible to interpret the field equation near horizon as a thermodynamic identity dE = TdS + PrdA +Ω+dJ, where Ω+ is the angular velocity and J is the angular momentum of BTZ black hole. These results indicate that the field equations for BTZ black hole possess intrinsic thermodynamic properties near the horizon.
Keywords: 04.70.Dy      97.60.Lf     
Received: 15 February 2007      Published: 23 April 2007
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  97.60.Lf (Black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01158
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Akbar
[1] Ashtekar A 2002 Adv. Theor. Math. Phys. 6 507
[2] Paranjape A, Sarkar S and Padmanabhan T 2006 Phys.Rev. D 74 104015
[arXiv: hep-th/0607240]
[3] Frolov A V and Kofman L 2003 J. Cosmol. Astropart. Phys. 0305 009
[4] Kothawala D, Sarkar S and Padmanabhan T 2007 arXiv: gr-qc/0701002
[5] Calcagni G 2005 J. High Energy Phys. 0509 060
[arXiv: hep-th/0507125]
[6] Bekenstein J 1994 arXiv: gr-qc/9409015Wald R M 2001 Living. Rev. Rel. 4 6
[7] Bekenstein J D 1973 Phys. Rev. D 7 2333 Bekenstein J D 1974 Phys. Rev. D 9 3293
[8] Bardeen J M, Carter B and Hawking S W 1973 Commun. Math. Phys. 31 161
[9] Akbar M and Cai R G 2006 Phys. Lett. B 635 7
[arXiv:hep-th/0602156]
[10] Akbar M and Cai R G 2006 arXiv: hep-th/0609128
[11] Akbar M and Cai R G 2006 arXiv: gr-qc/0612089
[12] Banados M, Teitelboim C and Zanelli J 1992 Phys. Rev.Lett. 69 1849 Banados M, Henneaux M, Teitelboim C and Zanelli J 1993 Phys.Rev. D 48 1506
[13] Bousso R 2005 Phys. Rev. D 71 064024
[arXiv:hep-th/0412197]
[14] Carlip S 1995 Class. Quant. Grav. 12 2853
[15] Cai R G, Lu Z J and Zhang Y Z 1997 Phys. Rev. D 55 853
[16] Cai R G and Kim S P 2005 J. High Energy Phys. 0502 050
[arXiv: hep-th/0501055]
[17] Hayward S A, Mukohyana S and Ashworth M C 1999 Phys.Lett. A 256 347
[18] Hawking S W 1975 Commun. Math. Phys. 43 199
[19] Wang S, Wu S Q, Xie F and Dan L 2006 Chin. Phys. Lett. 23 1096
[arXiv: hep-th/0601147]
[20] Jacobson T 1995 Phys. Rev. Lett. 75 1260
[21] Padmanabhan T 2002 Class. Quant. Grav. 19 5387
[arXiv: gr-qc/0204019] Padmanabhan T 2005 Phys. Rept. 406 49
[arXiv: gr-qc/0311036]
[22] Padmanabhan T 2002 Mod. Phys. Letts. A 17 923
[arXiv: gr-qc/0202078] Padmanabhan T 2005 Phys. Rept. 406 49
[arXiv: gr-qc/0311036]
[23] Padmanabhan T 2002 Class. Quant. Grav. 19 5387
[arXiv: gr-qc/0204019] Padmanabhan T 2006 arXiv:gr-qc/0606061
[24] Danielsson U K 2005 Phys. Rev. D 71 023516
[arXiv: hep-th/0411172]
Related articles from Frontiers Journals
[1] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1158-1161
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 1158-1161
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 1158-1161
[4] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 1158-1161
[5] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 1158-1161
[6] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 1158-1161
[7] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 1158-1161
[8] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 1158-1161
[9] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 1158-1161
[10] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 1158-1161
[11] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 1158-1161
[12] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 1158-1161
[13] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 1158-1161
[14] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 1158-1161
[15] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 1158-1161
Viewed
Full text


Abstract