Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1140-1143    DOI:
Original Articles |
Quantum Tricritical Point in the Spin-Boson Model with an Ohmic Bath
CHEN Wen;CHEN Zhi-De
Department of Physics, Jinan University, Guangzhou 510632
Cite this article:   
CHEN Wen, CHEN Zhi-De 2007 Chin. Phys. Lett. 24 1140-1143
Download: PDF(252KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dynamics of the spin-boson model with an Ohmic bath at finite temperature is studied by a variational calculation. Numerical solution of the self-consistent equation derived from the variational method shows that the transition from incoherent to coherent phases is discontinuous. It indicates that (T=0,s=1) is a tricritical point, i.e. the transition changes from continuous to discontinuous by tuning from T=0 to T≠0. The discontinuous transition at finite temperature is analysed by Landau theory and the relation to the experimental observation on the coherent state is also discussed.
Keywords: 03.65.Yz      03.65.Xp      73.40.Gk     
Received: 18 October 2006      Published: 23 April 2007
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Xp (Tunneling, traversal time, quantum Zeno dynamics)  
  73.40.Gk (Tunneling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01140
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Wen
CHEN Zhi-De
[1] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg Aand Zwerger W 1987 Rev. Mod. Phys. 59 1 and references therein
[2] Weiss U 1999 Quantum Dissipative Systems (Singapore:World Scientific)
[3] Bray A J and Moore M A 1982 Phys. Rev. Lett. 49 1545
[4] Hewson A C and Newns D M 1980 J. Phys. C 13 4477
[5] Zwerger W 1983 Z. Phys. B 53 53
[6] Silbey R and Harris R A 1984 J. Chem. Phys. 80 2615
[7] Chen H, Zhang Y M and Wu X 1989 Phys. Rev. B 39 546
[8] Nie Y H, Liang J J, Shi Y L and Liang J Q 2005 Eur.Phys. J. B 43 125
[9] Bulla R, Tong N H and Vojta M 2003 Phys. Rev. Lett. 91 170601 Bulla R, Tong N H and Vojta M 2005 Phys. Rev. B 71 045122
[10] Chin A and Turlakov M 2006 Phys. Rev. B 73 075311
[11]Tong N H and Vojta M 2006 Phys. Rev. Lett. 97 016802
[12]L"u Z G and Zheng H 2007 Phys. Rev. B 75 054302
[13] Spohn H and D"umcke R 1985 J. Statist. Phys. 41 389
[14] Kehrein S K and Mielke A 1996 Phys. Lett. A 219 313
[15]Vojta M, Tong N H and Bulla R 2005 Phys. Rev. Lett. 94 070604
[16] Sachdev S 1999 Quantum Phase Transition (Cambridge:Cambridge University)
[17] Vojta M 2003 Rep. Prog. Phys. 66 2069
[18] Goldenfeld N 1992 Lectures on Phase Transition and theRenormalization Group (Cambridge: Addison-Wesley)
[19] Chaikin P M and Lubensky T C 1995 Principles ofCondensed Matter Physics (Cambridge: Cambridge University Press)
[20] Feng D and Jin G J 2003 Condensed Matter Physics (Beijing: Higher Education Press) vol I (in Chinese)
[21] Wong H and Chen Z D cond-mat/0609201
[22] Tong N H and Pu F C 2000 Phys. Rev. B 62 9425
[23]Tong N H, Shen S Q and Pu F C 2001 Phys. Rev. B 64235109
[24] Leuenberger N and Loss D 2001 Nature 410 789
[25] Hou B P, Wang S J, Yu W L, Sun W L and Wang G 2004 Chin.Phys. Lett. 21 2334
[26] Wang W G 2003 Chin. Phys. Lett. 22 3009
Related articles from Frontiers Journals
[1] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 1140-1143
[2] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 1140-1143
[3] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 1140-1143
[4] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 1140-1143
[5] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 1140-1143
[6] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 1140-1143
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 1140-1143
[8] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 1140-1143
[9] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 1140-1143
[10] PENG Liang, HUANG Yun-Feng**, LI Li, LIU Bi-Heng, LI Chuan-Feng**, GUO Guang-Can . Experimental Demonstration of Largeness in Bipartite Entanglement Sudden Death[J]. Chin. Phys. Lett., 2011, 28(7): 1140-1143
[11] YAN Jun-Yan**, WANG Lin-Cheng, YI Xue-Xi . Sudden Transition between Quantum Correlation and Classical Correlation: the Effect of Interaction between Subsystems[J]. Chin. Phys. Lett., 2011, 28(6): 1140-1143
[12] XU Guo-Fu**, TONG Dian-Min . Non-Markovian Effect on the Classical and Quantum Correlations[J]. Chin. Phys. Lett., 2011, 28(6): 1140-1143
[13] QIU Liang . Nonlocality Sudden Birth and Transfer in System and Environment[J]. Chin. Phys. Lett., 2011, 28(3): 1140-1143
[14] JIANG Feng-Jian, SHI Ming-Jun**, DU Jiang-Feng** . Entanglement Dynamics of Arbitrary Two-Qubit Pure States under Amplitude and Phase Damping Channels[J]. Chin. Phys. Lett., 2011, 28(2): 1140-1143
[15] LV Fan, SUN Fang-Wen**, ZOU Chang-Ling, HAN Zheng-Fu, GUO Guang-Can . Measurement of Ultra-Short Single-Photon Pulse Duration with Two-Photon Interference[J]. Chin. Phys. Lett., 2011, 28(2): 1140-1143
Viewed
Full text


Abstract