Original Articles |
|
|
|
|
Non-Adiabatic Geometric Phase in a Dispersive Interaction System |
Ji-Bing1;LI Jia-Hua 1,LV Xin-You 1;ZHENG An-Shou 1,2 |
1Department of Physics, Huazhong University of Science and Technology, Wuhan 4300742Department of Mathematic and Physics, China University of Geosciences, Wuhan 430074 |
|
Cite this article: |
Ji-Bing, LI Jia-Hua, LV Xin-You et al 2007 Chin. Phys. Lett. 24 1136-1139 |
|
|
Abstract We investigate the geometric phase and dynamic phase of a two-level fermionic system with dispersive interaction, driven by a quantized bosonic field which is simultaneously subjected to parametric amplification. It is found that the geometric phase is induced by a counterpart of the Stark shift. This effect is due to distinct shifts in the field frequency induced by interaction between different states (|e> and |g>) and cavity field, and a simple geometric interpretation of this phenomenon is given, which is helpful to understand the natural origin of the geometric phase.
|
Keywords:
03.65.Vf
42.50.Ct
42.50.Pq
|
|
Received: 26 December 2006
Published: 23 April 2007
|
|
PACS: |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
|
|
|
[1] Pancharatnam S 1956 Proc. Indian Acad. Sect. A 44 274 [2] Berry M V 1984 Proc. Roy. Soc. A 392 47 [3] Simon B 1983 Phys. Rev. Lett. 51 2167 [4] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 [5] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 581593 [6] Uhlmann A 1986 Rep. Math. Phys. 24 229 [7] Sj"oqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi DK L and Vedral V 2000 Phys. Rev. Lett. 85 2845 [8] Singh K, Tong D M, Basu K, Chen J L and Du J F 2003 Phys.Rev. A 67 032106 [9] Tong D-M, Chen J-L and Du J-F 2003 Chin. Phys. Lett. 20 793 [10]Carollo A, Fuentes-Guridi I, Franca S M and Vedral V 2003 Phys. Rev. Lett. 90 160402 [11] Tong D M, Sj"oqvist E, Kwek L C and Oh C H 2004 Phys.Rev. Lett. 93 080405 [12] Yi X X, Tong D M, Wang L C, Kwek L C and Oh C H 2006 Phys. Rev. A 73 052103 [13] Shapere A and Wilczek F 1989 Geometric phases inphysics (Singapore: World Scientific) [14] Macchiavello C, Palma G M and Zeilinger A 2000 QuantumComputation and Quantum Information Theory (Singapore: World Scientific) [15] Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407 355 [16] Suter D, Chingas G, Harris R and Pines A 1987 Mol.Phys. 61 1327 [17] Goldman M, Fleury V and Gu'eron M 1996 Magn. Reson. A 118 11 [18] Jones J A and Pines A 1997 J. Chem. Phys. 1063007 [19] Jones J, Vedral V, Ekert A K and Castagnoli C 2000 Nature 403 869 [20] Wang X B and Keiji M 2001 Phys. Rev. Lett. 87 097901 [21] Wu B, Liu J and Niu Q 2005 Phys. Rev. Lett. 94140402 [22] Serra M, Carollo A, Stantos M F and Vedral V 2004 Phys.Rev. A 70 044102 [23] Buck B and Sukumar C V 1981 Phys. Lett. A 81 132 [24] Yang X, Wu Y and Li Y J 1997 Phys. Rev. A 554545 [25] Wu Y and Yang X 1997 Phys. Rev. Lett. 78 3086 [26] Yang X X, Wu Y, Luo X L, Gao K L and Xiao Y 1998 Chin.Phys. Lett. 15 186 [27] Duzzioni E I, Villas-B^{oas C J, Mizrahi S S, Moussa M H Yand Serra R M 2005 Europhys. Lett. 72 21 [28] Lewis H R and Riesenfeld W B 1969 J. Math. Phys. 10 1458 [29] Boyd R 2003 Nonlinear Optics (New York: Academic) Scully M O and Zubairy M S 1997 Quantum optics (Cambridge:Cambridge University) Walls D F and Milburn G J 1994 Quantum Optics (Berlin:Springer) [30] Carollo A, Franca S M and Vedral V 2003 Phys. Rev. A 67 063804 [31] Brune M, Hagley E, Dreyer J, Ma$hat{rm i$tre X, Maali A,Wunderlich C, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 77 4887 Varcoe B T H, Brattke S, Weidinger M and Walther H 2000 {itNature 403 743 [32] Knight P L and Shore B W 1993 Phys. Rev. A 48 642 Hach I$!$I$!$I E E and Gerry C C 1994 Phys. Rev. A 49 490 Brune M, Haroche S, Raimond J M, Davidovich L and Zagury N 1992{it Phys. Rev. A 45 5193 [33] Wu Y and Yang X 2006 Phys. Rev. D 73 067701 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|