Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1133-1135    DOI:
Original Articles |
Stability of Motion of a Nonholonomic System
MEI Feng-Xiang;XIE Jia-Fang;GANG Tie-Qiang
Department of Mechanics, Beijing Institute of Technology, Beijing 100081
Cite this article:   
MEI Feng-Xiang, XIE Jia-Fang, GANG Tie-Qiang 2007 Chin. Phys. Lett. 24 1133-1135
Download: PDF(186KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Perturbation differential equations of motion of a general nonholonomic system subjected to the ideal nonholonomic constraints of Chetaev's type are established, and the equation of variation of energy is deduced by using the perturbation equations of the system. A criterion of the stability is obtained and an example is given to illustrate the application of the result.
Keywords: 03.20.+i      02.20.Jr      04.20.Jb     
Received: 01 February 2007      Published: 23 April 2007
PACS:  03.20.+i  
  02.20.Jr  
  04.20.Jb (Exact solutions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01133
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MEI Feng-Xiang
XIE Jia-Fang
GANG Tie-Qiang
[1] Karapetyan A V and Rumiantsev V V 1990 Applied Mechanics, Soviet Reviews ed Milhailov G K and Parton V Z(New York: Hemisphere) vol 1
[2] Zubov V I 1983 Analytical Dynamics of System of Bodies(Leningrad: LGU Press) (in Russian)
[3] Mei F X 1992 Chin. Sci. Bull. 37 82
[4] Zhu H P and Mei F X 1994 Chin. Sci. Bull. 39 13
[5] Zhu H P and Mei F X 1995 Appl. Math. Mech. 16 225
[6] Zegzhda S A, Soltakhanov Sh K H and Yushkov M P 2005 Equations of Motion of Nonholonomic Systems and Variational Principlesof Mechanics: New Class of Problems of Control (Moscow: Fizmatlit)
[7] Mei F X 1985 Foundations of Mechanics of NonholonomicSystems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[8] Papastavridis J G 1998 Appl. Mech. Rev. 51 239
[9] Mei F X 2000 Appl. Mech. Rev. 53 283
Related articles from Frontiers Journals
[1] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1133-1135
[2] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 1133-1135
[3] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 1133-1135
[4] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 1133-1135
[5] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 1133-1135
[6] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 1133-1135
[7] R. K. Tiwari, Sonia Sharma** . Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term[J]. Chin. Phys. Lett., 2011, 28(2): 1133-1135
[8] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 1133-1135
[9] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 1133-1135
[10] Ciprian Dariescu, Marina-Aura Dariescu. Boson Nebulae Charge[J]. Chin. Phys. Lett., 2010, 27(1): 1133-1135
[11] EL-NABULSI Ahmad Rami. Extra-Dimensional Cosmology with a Traversable Wormhole[J]. Chin. Phys. Lett., 2009, 26(9): 1133-1135
[12] N. Ibotombi Singh, S. Kiranmla Chanu, S. Surendra Singh. Cosmological Models with Time Dependent G and Λ Coupling Scalars[J]. Chin. Phys. Lett., 2009, 26(6): 1133-1135
[13] SHEN Ming. A New Solution to Einstein's Field Equations[J]. Chin. Phys. Lett., 2009, 26(6): 1133-1135
[14] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 1133-1135
[15] CHEN Shao-Hua, PENG Zhi-Long. An Extension of the Two-Dimensional JKR Theory to the Case with a Large Contact Width[J]. Chin. Phys. Lett., 2009, 26(12): 1133-1135
Viewed
Full text


Abstract